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SUMMARY

The major end-points arising from cancer clinical trials are reviewed. These are:
tumour response, treatment morbidity, survival with related data, and quality of life.

A survey of tumour response data from 81 published clinical trials found the most
common statistical test in use to be a Chi squared test of the total response rate, but a total
of 21 different statistical methods were used. The various statistical tests available are
reviewed, including the Mann-Whitney test and the Chi squared test for trend which make
use of all the categories of response and their intrinsic order. The assumptions underlying
the tests are described. Theoretical considerations support the Mann-Whitney test as the
optimum choice for the analysis of tumour response data.

Methods for comparing alternative statistical tests are summarised, and a new
method is described which uses a number of typical sets of data to estimate the relative
efficiency of two statistical tests by the median value of the square of the ratio of the
z-values. Using this technique, and data from the 81 trials, the Mann-Whitney test is found
to be around 40% more efficient than the Chi squared test of the total response rate (this
increased efficiency is equivalent to increasing the recruitment to the trial by 40%).

This practical result is confirmed by mathematical modelling of tumour response
using the power relation of the Mann-Whitney test for ordered categorical data, which is
derived. Clinical data is found to fit best a shift model which assumes homogeneity of
treatment effect across the different grades of response. On the basis of this model, the
Mann-Whitney test is found to be 30% to 110% more efficient than a Chi squared test of
the total response rate.

The similarities of acute morbidity data to tumour response data lead to similar
general conclusions on the optimum method of statistical analysis. In a survey of 36
published clinical trials, the most common method of statistical analysis was again a Chi
squared test of a dichotomy (such as no morbidity versus morbidity of any grade).
Analysis of data from these trials shows the Mann-Whitney test to be more efficient by
around 30%.

A survey of 81 papers reporting tumour response in clinical trials found that few of
them used methods of estimation of the difference between the treatments, or derived
confidence intervals of the size of such a difference. Methods of estimation and
calculation of confidence intervals were found even less often in a survey of methods of
presentation of morbidity results. The possible reasons for this are discussed.

It is concluded that the current methods of analysis of tumour response data and
many sets of acute treatment morbidity data are not optimum, and a change should be
made from the Chi squared test to the Mann-Whitney test. Such a change could be
equivalent to an increase in recruitment into many cancer clinical trials of around 40%.

KEY WORDS

Neoplasms [therapy]; Clinical Trials [methods]; Research Design; Statistics; Efficiency;
Mann-Whitney test
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CHAPTER 1. GENERAL INTRODUCTION

1.1 TYPES OF END-POINT IN CANCER CLINICAL TRIALS

To cure sometimes, to relieve often, to comfort always.

(quoted in Strauss, 1968)

This folk saying dates back to the fifteenth century or earlier, but the aims of the

treatment of cancer today are almost exactly the same. They are firstly cure, secondly

induction of tumour remission with relief of symptoms and prolongation of life if cure

is not possible, and thirdly palliation of those symptoms which cannot be controlled by

specific cancer treatments.

Although these aims may be clear in the minds of the doctors treating cancer, none

of them can easily be measured in a scientific manner when treatments are being

assessed within a clinical trial. It is necessary instead to measure what can be measured

and then make inferences concerning the primary aims. In practice, the four main types

of end-point used in cancer clinical trials are

• Survival and related measures

• Tumour response

• Treatment morbidity

• Quality of life
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SURVIVAL

For curative treatments, survival is the primary end-point, but the morbidity of

treatment must also be considered, since it may be of no benefit to patients if a small

increase in the cure rate is obtained at the expense of a large increase in long term

morbidity. There are some difficulties in the precise definition of cure in cancer - in

particular, recurrences may not develop until many years after diagnosis (as in breast

cancer and melanoma, for example), and second primary tumours may occur and be

difficult to distinguish from recurrences of the first primary (as in breast and bowel

cancers). For some cancers, a proportion of patients can be identified several years after

treatment, whose death rate is similar to that of the rest of the population (Haybittle,

1983), but in general, it is difficult to distinguish between a cured and non-cured fraction,

and separate analyses are not usually done.

There are two particular characteristics of survival data which mean that specific

statistical techniques are required for analysis. Firstly the observation of a patient is often

incomplete (usually because the patient is still alive at the time of analysis and his

duration of survival is therefore not known), and secondly the duration of follow-up is

different for different patients, since entry into the clinical trial occurs over an accrual

period, often of several years. These characteristics are shared by a number of other

endpoints of cancer clinical trials, as follows.

� Time to any recurrence

� Time to local recurrence

� Time to distant recurrence

� Time to death from cancer (as distinct from death from any cause, e.g. where a

large proportion of the patients die of non-malignant causes such as in carcinoma

of the prostate gland)

� Time to development of late morbidity
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These measures may be less important than the survival data, but can be useful to indicate

where treatment is failing. Because of the similarity with survival data, these end-points

are usually analyzed by the same methods as the overall survival data. Late morbidity is

often measured as an ordered categorical variable, which makes analysis of data even

more complex. Methods for the analysis of censored ordered failure-time data are not

well developed, and will not be considered in this dissertation.

TUMOUR RESPONSE

When a cancer treatment is given, the first indication of the efficacy of the

treatment is whether the tumour shrinks or continues to grow. This response of the

tumour to treatment may be an indicator of both amelioration of symptoms and of long

term cure. However, a higher response rate does not necessarily lead to a higher cure rate,

and a higher response does not necessarily benefit the patients if it is obtained at the

expense of severe morbidity. Response data give a much earlier indication of treatment

efficacy than survival data, since response data are available within a period of months

in a clinical trial, whereas estimation of cure usually requires follow-up for many years.

Consequently, response data are most used in the early phases of treatment development.

TREATMENT MORBIDITY

Many cancer treatments are given close to their maximum tolerated doses and so

observation of morbidity is important in cancer clinical trials. In general, frequency and

severity of morbidity increase with the dose of chemotherapy or radiotherapy, but the

relationship is not always a simple one. In some cases (e.g. the lung fibrosis caused by

bleomycin and the cardiotoxicity caused by doxorubicin), there is a threshold, with little

toxicity below a threshold dose and then a rapid rise in both frequency and severity. In

other cases, e.g. myelosuppression, lesser grades of morbidity may cause insignificant
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clinical problems whereas the more severe grades may be life-threatening - minor grades

of white count and platelet suppression usually cause no clinical manifestations whereas

severe grades can cause septicaemia and haemorrhage respectively and can be fatal.

In any clinical trial, it is important to identify the set of questions to be answered,

and this will govern the kind of data to be collected, and the statistical analyses to be

performed.

QUALITY OF LIFE

More and more cancer clinical trials are including assessments of quality of life.

This results from the realisation that it is not sufficient to show that a treatment causes

shrinkage of a tumour, or prolongs life; if these effects are obtained at the expense of

severe morbidity, then the patients may not have received a net benefit from the treatment.

 'Quality of life' cannot be defined precisely, and the term is used to cover three

types of approach. Firstly, the control of symptoms due to a cancer can be assessed, for

example control of cough and chest pain from a lung cancer can be measured, as in the

recent MRC lung cancer radiotherapy trials. These end-points are relatively easy to

measure and evaluate. Secondly, instruments have been developed to assess the effect of

the disease and its treatment on a range of physical and psychological functions of the

patient. These usually take the form of questionnaires (some self-administered and some

administered by clinicians or interviewers) which may combine specific disease or

treatment related questions (e.g. pain and nausea) as well as general questions

(Fitzpatrick et al, 1992). Most give scores for a number of different dimensions, e.g.

physical, emotional and social functions, and some provide a total score derived from the

individual dimensions - although whether this kind of summation should be
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recommended is questionable (Fitzpatrick et al, 1992; Spiegelhalter et al, 1992).

Summation may result in contradictory trends for the different dimensions of quality of

life being overlooked. General quality of life scales have been available for some time

(Clark and Fallowfield, 1986) and measurement scales specific to cancer patients have

more recently been developed (Aaronson et al, 1988; Maguire & Selby, 1989). These

questionnaires may be quite time consuming to complete, which makes them less easy

to use repeatedly during the course of an illness. There are also problems of analysis

when patients withdraw from a study or are lost to follow-up.

The third approach is to evaluate quality of life in terms of a single summary figure

which reflects the balance of gains and losses from treatments given. A number of

different methods have been proposed, and have been reviewed by Kind (1988). For

example, overall quality of life can be assessed by a single visual analogue scale. A

second method is the time trade-off technique, where patients are asked to choose

between two alternatives of (a) remaining in the current state of health for time t followed

by death, or (b) returning to a perfect state of health for a shorter time x followed by death.

The duration x is varied until the patient rates the two alternatives as equal and is unable

to choose between them. The patient's assessment of his or her health state in then given

by the ratio x/t. In the standard gamble, patients are asked to choose between another two

hypothetical alternatives. In one alternative, the patient remains in the current state of

health; the second alternative is a risky choice in which there is a possibility of returning

to good health with a probability P, with a complementary probability (1 - P) of

immediate death. The probabilities are varied until the patient is unable to choose

between the certainty of remaining in the initial health state and the gamble. The patient's

assessment of his or her health state is then given by P. A single quality of life figure can

also be obtained from data expressed in terms of various rating scales by use of the

Rosser disability-distress matrix (Gudex & Kind, 1988). Repeated estimation or

measurement of this overall quality of life score over time will give a measure in terms

9A



of quality of life years - the QALY index (Gudex and Kind, 1988; Maguire and Selby,

1989), or in terms of quality adjusted time without symptoms and toxicity –  Q-TWiST

(Gelber et al, 1991).

QALYs can be used to choose between alternative treatments for the same patient,

or to choose among different interventions aimed at different patient groups. Increasing

constraints on health care expenditure have led to a search for rational and accountable

methods of allocating resources, and QALYs have been seized upon as possibly

fulfilling this role. However, there are major doubts over whether the cost and outcome

information and methodology are available yet for QALYs to perform this role

effectively (Spiegelhalter et al, 1992)

SCOPE OF THE DISSERTATION

This dissertation will concentrate on the evaluation of two types of end-point in

cancer clinical trials: firstly the evaluation of the efficacy of treatment on the basis of

tumour response, and secondly on some kinds of acute treatment morbidity where the

level of morbidity is graded by allocation to a number of categories. It will be shown

in chapters 2 and 3 that there are close similarities between these two types of data, and

this means that similar statistical techniques are appropriate for analysis. Survival data

and related types of data require a different set of techniques (Kaplan and Meier, 1958;

Peto et al, 1976; Peto et al 1977; Armitage & Berry, 1987; Altman, 1991), and will not

be discussed further.
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1.2 THE NEED FOR STATISTICAL METHODS IN CANCER CLINICAL

TRIALS

Occasionally a new treatment is developed where it becomes obvious, as soon as

a few patients have been treated, that the results are a large improvement on previous

treatments. Here, there may be no need for comparative clinical trials or detailed

statistical analysis. An example is the introduction of the drug cisplatin into

combination cytotoxic treatment of disseminated testicular teratoma (Einhorn et al,

1989)

Much more commonly, the new treatment has results roughly similar to those of

existing treatments, and the problem is to determine whether there is a modest

improvement, no change, or a modest detriment in outcome. Compelling arguments can

be put forward for comparison of treatments in clinical trials to be by random allocation

of patients between treatments rather than by a comparison against historical controls

(Staquet & Dalesio, 1984), but these will not be discussed further.

Although it is easy to draw conclusions on the treatment of future patients when

a trial shows a large clearcut difference in results, it is less easy to do so when the

difference is small. Clearly the ideal is to draw the correct conclusions and adopt a new

treatment if it is really better than existing treatments and reject it if it is no better or

worse than existing treatments (the designation of a treatment as "better" needs to

include a consideration of morbidity and costs as well as beneficial outcome). Thus two

kinds of error are possible in generalising from the results of a trial. The first is to adopt

a treatment which is apparently better but in reality no better than existing treatments,

and the second is to reject a new treatment which apparently is no better but in reality

is an improvement. These errors may be termed "false positive conclusions" and "false

negative conclusions" respectively.
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Statistical methods are important because they help to minimize these errors in the

application of trial results. Without them, the interpretation of results would be

essentially a matter of guesswork, and would be subject to arguments that could not be

resolved. To quantify the risk of false positive conclusions, statistical techniques are

available to calculate P values from the observed clinical data; these are the probability

of obtaining the observed results (or more extreme results) supposing that there is no

difference between the treatments.

POWER AND SAMPLE SIZE

To quantify the risk of a false negative conclusion being drawn from the clinical

data, the concept of power has been developed. This is the probability that the clinical

trial would have detected a particular difference in outcome. Commonly, the planners of

multicentre clinical trials aim for power of 80% or more. The power of a clinical trial

depends on the specified difference in outcome (larger differences are easier to detect),

and the statistical test used. It also depends on the level of statistical significance that will

be used (usually 5%) and the numbers of patients entered in the trial (the power increases

with the number of patients entered).

The relation of the power to the number of patients entered is crucial to the design

of clinical trials. In many cancer trials, the numbers of patients entered are such that only

large real differences in outcome would have been reliably detected, and the probability

of small differences (a more realistic expectation) being detected is small. The small size

of many trials is usually due to the difficulties in recruitment of adequate numbers of

patients (Pocock, 1978; Pocock et al, 1978). Many other trials considered are never even

started because of the limitations of patient numbers available for study. Thus recruit-

ment is often the major limiting factor to the pace of advance of clinical knowledge

through clinical trials.
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Because the power of a clinical trial also depends on the statistical method used

to analyze the clinical data, it is important that the statistical method used is the one

with the greatest power. If there is a choice between two statistical methods, and there

is general use of the less powerful statistical method, then more patients will be

required in clinical trials and the pace of advance of clinical knowledge will be slower

than it could be. This is a strong argument for clinicians to pay attention to statistical

methodology and this will be discussed further in section 2.4 which will discuss the

relative efficiency of statistical tests.

ESTIMATION AND CONFIDENCE INTERVALS

The discussion so far has been in terms of testing whether a difference exists

between the results of treatments in a clinical trial (i.e. hypothesis testing). However,

this approach has in the past been misused and significance levels from clinical trials

have been reported without adequate discussion of the size of the differences found

(Pocock et al, 1987). There are increasing calls (Gardner and Altman, 1988;

Anonymous, 1987) for greater emphasis to be put on the size of the difference found in

a clinical trial, and to give some idea of the precision of the estimate of the difference

by the use of a confidence interval.

A 95% confidence interval can loosely be described as a range of values that

includes the true value with a probability of 95% (Altman, 1991). More exactly, if a

clinical trial were repeated 100 times and a 95% confidence interval were calculated

each time, then 95 of these 100 confidence intervals would be expected to contain the

true value.
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CHAPTER 2. TUMOUR RESPONSE DATA

2.1 INTRODUCTION

METHODS OF MEASUREMENT

The response of solid tumours to treatment is assessed by observing the change

of tumour size with time. The tumour size can be measured directly by clinical

examination using a ruler or callipers, if the tumour is superficial, or indirectly by

imaging techniques (combined with a magnification factor) if it is deep. For example,

chest masses can be evaluated from chest X Rays and deep abdominal masses can be

evaluated by computerised tomography (CT). Laboratory studies e.g. blood

biochemistry are sometimes included in the evaluation of response e.g. HCG levels in

teratoma of the testis.

PRECISION OF MEASUREMENT

The precision of measurement of solid tumour masses depends on their position,

shape and degree of demarcation. Deep masses are measured less accurately than

superficial masses, especially deep masses within the pelvis. With the advent of CT

scanning this is less of a problem, although CT scanning cannot usually be performed

as frequently as clinical examination, so that there may be only a few occasions on

which the tumour size is accurately known.
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Irregularly shaped masses are more difficult to assess than spherical masses.

For example, the diameters of a rounded lung metastasis may be readily measured, but

different observers will find difficulty in agreeing on the dimensions of a pleural

effusion.

Although well demarcated tumours can be measured with a precision of a few

millimetres, less well defined tumour masses such as diffusely infiltrating tumours or

lymphangitis carcinomatosis can be difficult or impossible to measure. Involvement of

the liver by multiple tumour masses is usually assessed only by the enlargement of the

whole organ rather than measurement of the individual masses (Miller et al, 1981).

Little work has been done on the reliability of measurement of tumour size.

However, Moertel & Hanley (1976) in a simulation used a series of spheres beneath

a layer of foam rubber to assess the accuracy of clinicians' assessments of tumour size.

One finding was that clinicians frequently reported a difference of 25% in tumour size

(measured as the product of two perpendicular diameters) when presented with the

same sized spheres. The conclusions of the study were that high accuracy is difficult to

achieve, and it is necessary to define tumour response by a large estimated reduction

in tumour size (50% or more in the product of two perpendicular diameters) in order

to give a reliable indication that the real tumour size has in fact decreased. Furthermore,

the error rate should be less if the same clinician assesses the tumour on all occasions.

A tumour measurement must be recorded accurately if it is to be compared with

a subsequent measurement in order to assess tumour response. In an external review of

assessment of response of breast cancer to chemotherapy, Sears and Olson (1980)

found that 16% of cases were nonevaluable because of inadequate documentation. In

another 5% of cases, reviewers disagreed with the investigators' assessment of whether

there had been a response to treatment.
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SYSTEMS OF CLASSIFICATION OF TUMOUR RESPONSE

Because of the inaccuracies in measuring tumour size, response of solid tumours

to treatment is rarely reported in terms of a numerical change in size. Instead, patients

are allocated into one of the 4 broad categories of complete response (CR), partial

response (PR), no change (NC), and progressive disease (PD). Standard definitions for

the assessment of response in breast cancer were published by the International Union

Against Cancer (UICC) (Hayward et al, 1977). Representatives of the EORTC, the

National Cancer Institute of the USA, the UICC and several other organisations met and

agreed on standard definitions for response assessment in general, which were published

by the World Health Organisation (WHO) (WHO, 1979). These recommendations have

also been reported in a more accessible source (Miller et al, 1981). Table 2.1 gives the

WHO definitions of response for measurable disease. Recommendations are also given

for non-measurable disease and bone metastases, as well as for other aspects of reporting

the results of cancer treatment.
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Table 2.1. WHO Definition of Objective Response for Measurable Disease (Miller et al,

1981)

______________________________________________________________________

1. Complete response (CR).

The disappearance of all known disease, determined by two observations not less

than four weeks apart.

2. Partial response (PR).

50% or more decrease in total tumour load of the lesions that have been measured

to determine the effect of therapy by two observations not less than four weeks

apart. Bidimensional: single lesion, greater than or equal to 50% decrease in

tumour area (multiplication of longest diameter by the greatest perpendicular

diameter); multiple lesions, a 50% decrease in the sum of the products of the

perpendicular diameters of the multiple lesions. Unidimensional: greater than or

equal to 50% decrease in linear tumour measurement. In addition there can be no

appearance of new lesions or progression of any lesion.

3. No change (NC).

A 50% decrease in total tumour size cannot be established nor has a 25% increase

in the size of one or more measurable lesions been demonstrated.

4. Progressive disease (PD).

A 25% or more increase in the size of one or more measurable lesions or the

appearance of new lesions.

______________________________________________________________________

The application of these criteria is often not simple and has been extensively discussed

(Smith, 1983; Israel, 1983; Parbhoo & Wahba, 1983; Hoogstraten, 1984). For example,
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the volume of a tumour is not closely related to the number of clonogenic cells (i.e. cells

with a potential to divide indefinitely) (Hall, 1978), or different masses within the same

patient may respond differently. There may also be problems that tumour masses do not

completely disappear after treatment and yet apparently contain no viable malignant

cells, as may occur in testicular teratoma treated by chemotherapy (Tait et al, 1984).

However, the classification systems have now been in routine use for many years and

there seems to be reasonable satisfaction with their ease of use and reproducibility.

Sometimes a fifth category is used of minimal response (of between a 25% and 50%

reduction in the product of perpendicular diameters). However, this has been criticised

(Hoogstraten, 1984) on the basis that the work of Moertel and Hanley (discussed above)

implies that the designation of a minimal response is very unreliable.

TUMOUR RESPONSE: TYPE OF DATA

Although tumour size is a numerical quantity (in statistical terminology, a

continuous quantitative variable), the classification system that is almost universally

used reduces tumour response to an allocation into one of 4 categories (i.e. to a

categorical variable). Thus the data consist of the numbers of patients in the 4 categories.

A point that is crucial to much of the discussion of tumour response in this dissertation

is that the 4 categories clearly fall into a natural order from the best to the worst, i.e. CR,

PR, NC, and PD. The data is therefore termed ordered categorical data. This is in

contrast to data such as histological type where there is no intrinsic order in the

categories, for example, transitional cell carcinoma, squamous cell carcinoma, and

adenocarcinoma have no intrinsic order.

  The question of how to analyze response in cancer clinical trials is thus

essentially one of how to analyze ordered categorical data. Because the categories are

ordered, a particular set of statistical techniques can be applied with advantage, and this
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has not always been appreciated. These statistical techniques will be discussed in

section 2.3.

THE VALUE OF MEASUREMENT OF TUMOUR RESPONSE

There is no intrinsic value in tumour response (except perhaps for the patient's

morale); response is a surrogate end-point and not an end in itself. Its value is as a

predictor of survival or improved quality of life.  Response has advantages over quality

of life in that the latter is very subjective and methods of evaluation in Oncology are

still under development (Aaronson et al, 1988).  Response also has advantages over

survival in that response data are usually available within a period of months of

treatment, whereas survival data require follow-up over a period of years, a point which

is particularly important in the early phases of treatment development. In addition to

these general considerations, there are four areas where response data are particularly

valuable.

Firstly in a crossover trial of two treatments, where all patients failing to respond

to (or relapsing after) each treatment are then given the other treatment, a difference in

survival may not be expected, and a difference in treatment efficacy may well show

only by a difference in response or quality of life.

Secondly, where a treatment is a local treatment (e.g. radiotherapy or surgery)

and the aim of treatment is local control of disease, there will be no effect of treatment

on the metastatic disease that may coexist and which may well be the main determinant

of survival. Here again a survival improvement may not be expected even when there

is a difference in treatment efficacy. An example is locally advanced breast cancer

where a large proportion of the patients will die because of metastatic disease which

coexists at presentation (either symptomatic or occult), and yet an important part of the
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overall management is the attempt at local control of the disease. Here, response data will

be a useful indicator of treatment efficacy. A second measure in this situation could be

the duration of local control, but there are difficulties in the definition of this (Parsons et

al, 1990).

A third area is in advanced disease where attempts at a cure have been abandoned

and the aim of treatment is purely palliative. The main end-points are symptomatic relief

and quality of life, but if the patient has several problems and a treatment affects only

one of them, any effect of the treatment on the overall quality of life may be masked by

the coexisting problems. The response of the individual problems may well provide a

better indication of treatment efficacy.

Lastly, a clinical trial comparing two treatments may show a survival difference

which is of marginal statistical significance. Examination of whether or not the response

data show a clearcut difference will aid the interpretation of the survival data.
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2.2 A SURVEY OF STATISTICAL TESTS IN USE FOR TUMOUR RESPONSE

DATA

INTRODUCTION

As already discussed, the response of tumours to treatment is usually assessed by

allocation to one of the 4 categories of complete response (CR), partial response (PR),

no change (NC), and progressive disease (PD). Several statistical methods are available

for the analysis of tumour response data when two or more treatments are being

compared, and these will be reviewed in the following section. Because the categories of

response fall into a natural order, a case can be made for the use of the Mann-Whitney

test (Moses et al, 1984; Morton & Dobson, 1990) or other tests that make use of the order

of the categories (Moses et al, 1984; Bartolucci, 1984).  However, Moses et al found that

these tests were not being used in the analysis of ordered categorical data published in

1982 in articles in a general medical journal; instead, the most common statistical test

used was the less efficient simple Chi squared (χ2) test for heterogeneity.

This survey of published trials was undertaken to answer the question of which

statistical tests are currently being used in the analysis of response data in Oncology.

METHODS

A survey was made of seven specialist Oncology journals, "British Journal of

Cancer", "Cancer", "Clinical Oncology" (formerly a section in "Clinical Radiology"),

"European Journal of Cancer" (formerly "European Journal of Cancer and Clinical

Oncology"), "International Journal of Radiation Oncology Biology Physics", "Journal of
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Clinical Oncology", and "Radiotherapy and Oncology". Papers were identified from the

contents pages and were studied provided they fulfilled the criteria of randomised

controlled trials of treatments for solid tumours in which response was reported. Papers

on lymphoma were included, but papers on myeloma or leukaemia were not, since they

are not solid tumours, and different response measures are used. Brief communications

in letters and abstracts from meetings were excluded.

A decision on the size of the survey was made after the first 20 papers had been

studied as a pilot study. Two criteria were used. Firstly a minimum of 50 papers was

required in order to study the distribution of papers across the different statistical tests

with reasonable precision. Secondly, a minimum of 20 papers having results significant

at a 5% level by both a Chi squared test and a Mann-Whitney test was stipulated because

the same series of papers was also to be used for the study of re-analysis of data that is

presented in section 2.5. Starting with issues dated December 1990, journals were

surveyed in reverse date order in batches of 6 months until the above criteria had been

satisfied. This resulted in a total of 81 papers published between July 1988 and

December 1990 inclusive. Each paper was analyzed using the form in Appendix C.

CHARACTERISTICS OF THE PAPERS STUDIED

Table 2.2 gives the distribution of tumour types in the 81 papers. The type of

treatment comparison reported is shown in Table 2.3. The number of treatments

compared was 2 in 67 papers (83%), 3 in 11 papers (13%), and more than 3 in 3 papers

(4%).  The numbers of patients included in the trials ranged from 12 to 859 with a median

of 111.

Whether response was a major end-point in the study was judged from whether or

not the abstract of the paper included data or conclusions concerning response. Response
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was included in the abstract in 78 papers (96%), it was not included in 2 papers (3%) and

one paper had no abstract.

Table 2.2. Distribution of tumour types
______________________________________________________________________

Tumour type      Number of papers
______________________________________________________________________

Breast Carcinoma 15

Bronchial Carcinoma, Non-Small Cell type 15

Bronchial Carcinoma, Small Cell type 9

Colorectal Carcinoma 13

Head & Neck Carcinoma 6

Prostatic Carcinoma 4

Multiple types, metastatic 4

Cervix Uteri Carcinoma 2

Ovarian Carcinoma 2

Urothelial Carcinoma  2

Other* 9
 __

Total  81

 ______________________________________________________________________

*one paper each of Carcinoid Tumour, Germ Cell Tumours, Hepatocellular Carcinoma,

Hodgkin's Disease, Melanoma, Non-Hodgkin's Lymphoma, Pancreatic Carcinoma,

Salivary Gland Carcinomas, and Soft Tissue Sarcoma.
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Table 2.3. Types of treatment comparison

______________________________________________________________________

Type of comparison    Number of papers

 ______________________________________________________________________

Chemotherapy versus Chemotherapy 51

Hormone therapy versus Hormone therapy 9

Radiotherapy versus Radiotherapy + Chemotherapy 4

Chemotherapy versus Immunotherapy 3

Chemotherapy versus Chemotherapy + Radiotherapy 2

Immunotherapy versus Immunotherapy 2

Radiotherapy versus Radiotherapy + Radiation sensitizer 2

Other 8
 __

Total 81

 ______________________________________________________________________

The system used for classification of tumour response was reported as a standard

one such as the WHO system (Miller et al, 1981) in 43 papers (53%), it appeared to be

especially constructed in 28 papers (35%), and in 10 papers (12%) it was unstated. The

number of categories used for recording response was 2 in 6 papers (7%), 3 in 17 papers

(21%), 4 in 51 papers (63%) and 5 in 7 papers (9%). Thus the great majority of papers

graded response in a way that would have allowed statistical analysis by a test that makes

use of the order of the categories.
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RESULTS

The methods of statistical analysis reported in the 81 papers are summarised in

Table 2.4.  It is possible that other tests were also applied to the data and not included in

the published paper, but this issue was not mentioned in any paper.

The most common test reported was the simple Chi squared test, but there was

considerable variation in how it was used. A single Chi squared test was used in 26

papers; two Chi squared tests were applied to the data in 6 papers, and three Chi squared

tests were used in one paper. In some cases the Chi squared test was applied to the

original table of frequencies and in some cases it was applied after collapsing the table

to a dichotomy such as CR + PR versus NC + PD, as detailed in Table 2.4.  In 5 papers

the Chi squared test of a dichotomy was combined with multivariate analysis including

factors such as performance status and age.

Fisher's exact test was used in 10 papers, again with variation in the precise details

as shown in Table 2.4. The Chi squared test for trend was used in a total of 3 papers,

and the Mann-Whitney test was one of the tests used in one.

Six different dichotomies were used in those papers where the original table was

collapsed to a dichotomy prior to analysis by a Chi squared test, Fisher's exact test or

multivariate analysis. The most common dichotomies were CR + PR versus NC + PD

(41 instances), CR versus PR + NC + PD (7 instances), and CR + PR + NC versus PD

(4 instances). There was one instance each of use of the other three dichotomies.

Altogether, including variations and combinations, 21 different statistical methods

were applied to the reported data.
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Table 2.4. Method of statistical analysis reported in the published paper
______________________________________________________________________

Method Number of papers
______________________________________________________________________

Chi squared test   40
 Single Chi squared test  26
  On overall table 3
  After collapsing to a dichotomy 19
  Method unclear 4
 Two Chi squared tests  6
  On overall table and one dichotomy 1
  On two dichotomies 5
 Three Chi squared tests (on three dichotomies)  1

Chi squared test and multivariate analysis  5
  On one dichotomy 3
  On two dichotomies 2
 Multivariate analysis on one dichotomy  2
Fisher's exact test   10
 One test on one dichotomy  7
 Two tests on two dichotomies  2
 One test on one dichotomy with multivariate analysis  1
Chi squared test for trend     2
Chi squared test for trend, and Chi squared test on one dichotomy     1
Mann-Whitney test, and Chi squared test on two dichotomies     1
No statistical test reported   19
Method unclear     8
     __

Total     81
______________________________________________________________________

The P values from the statistical tests were reported in 43 papers (68% of the papers

that reported statistical analysis). In 15 papers (24%) only "significant" or "not

significant" was reported. In 4 papers (6%) multiple tests were done without a consistent

pattern to the reporting. The statistical analysis was reported as two-sided (or two-tailed)
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in 15 papers (24%), and as one-sided (or one-tailed) in 4 papers, but no mention of this

aspect was made in 44 papers (70%).

DISCUSSION

This survey was not a fully comprehensive survey of all papers that include a

comparison of tumour response data, since not all specialist Oncology journals were

included in the survey, and since some Oncology papers are published in more general

journals. However, the range of tumour types and the range of treatment comparisons

shown in Tables 2.2 and 2.3 suggest that the papers studied are reasonably representative

of the Oncology literature in general. In almost all cases, reference was made to response

in the abstract of the paper and so response appears to have been judged a major endpoint

by the authors. Therefore some kind of statistical analysis of response would be expected

in the papers, either a statistical test of a null hypothesis or estimation of the difference

in outcome together with the confidence interval.

Only 53% of the papers reported that assessment of response was by standard

criteria. In some of the remainder the differences from the WHO criteria (Miller et al,

1981) were minor. In some papers there were good reasons for non-standard criteria

being used as the problem being studied was not well covered by the standard criteria.

The variety of statistical techniques used (a total of 21 techniques including all

variations and combinations) shows a need for standardisation of the method of

statistical analysis. The great majority of studies assessed response using more than 2

categories of classification and so could have used a statistical technique that takes

advantage of the order of the categories e.g. the Mann-Whitney test or the Chi squared
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test for trend. Only 4 papers used one or other of these techniques despite

recommendations for their use in the analysis of ordered categorical data (Moses et al,

1984; Armitage & Berry, 1987), of which response data are examples. These techniques

will be discussed in detail in the following section, which describes the available

statistical tests that can be applied to tumour response data.

There was a variety of dichotomies used when the 4 categories of tumour response

were collapsed to 2 for analysis by the Chi squared test or Fisher's exact test. This

illustrates the disadvantages of these techniques in that the choice of dichotomy is to

some extent arbitrary, and this will be discussed further in the following section.

No statistical test was reported in 19 papers. In one of these a 95% confidence

interval for the difference in the total response rate was calculated by the authors, but in

18 papers, no method at all was reported. (The use of confidence intervals is analyzed in

more detail in section 2.8). It can be argued that statistical analysis is unnecessary where

the outcome from a trial is clearcut, and this may occur either because the results from

the treatments compared are exceedingly similar or because they are exceedingly

dissimilar. In order to assess whether this could explain the lack of a statistical method

in the 18 papers, the results of the papers were analyzed by statistical tests, and the papers

were then arbitrarily divided into 3 groups on the basis of the z-values (briefly, the

z-value is the number of standard errors, a z-value of 1.96 corresponding to a P value of

0.05; fuller details are given in Appendix B.) The three groups were (a) those where the

z-values were all less than 1.0 i.e. two-sided P value was greater than 0.32 (whether

analysis was done by the Chi squared test or the Mann-Whitney test), where the results

might be judged by eye to be similar, (b) those where the z-values lay between 1.0 and

3.0, and (c) those where all z-values were over 3.0 (P < 0.0027), where the results might

be judged by eye to be dissimilar. Examples of sets of data falling in these three groups

are given in Table 2.5. The division of the 18 papers into these 3 groups was (a) 10,
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(b) 6, (c) 2. Thus in at least 6 papers, it appears that some form of statistical analysis

should have been reported, especially in the 3 papers out of these 6 where conclusions

were drawn on the relative efficacy of the treatments studied.

Table 2.5. Example data sets comparing two treatments (denoted A and B) where the

z-values are (a) less than 1.0 (P > 0.32), (b) between 1.0 and 3.0, or (c) greater than 3.0

(P < 0.0027).

 (a) (b) (c)

 A B A B A B

CR  40  38 0  1 0  0

PR  28  34 62  69 15  2

NC  9  8 26  28 29  33

PD  9  9 40  21 10  20

The failure to make clear the method of analysis used in 8 papers (10%) is

disappointing. So also is the reporting of the analysis only in terms of "significant" or

"not significant" in 15 papers (24%), especially as the derived statistic (which would

have allowed readers to calculate a P value) was given in only 2 of these 15.

Furthermore, only a minority of papers reported whether statistical tests were one- or

two-sided. These failures illustrate that guidelines on the reporting of results (Altman

et al, 1983; Gardner et al, 1986) are not always being followed.
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2.3 A REVIEW OF THE STATISTICAL TESTS AVAILABLE FOR TUMOUR

RESPONSE DATA IN CANCER CLINICAL TRIALS

INTRODUCTION

The preceding section showed considerable variation in the statistical techniques

being used to analyze tumour response data in cancer clinical trials. The current section

reviews the principal statistical tests that can be applied to such data. These are

� The Chi squared test of 4 categories of response

� The Chi squared test of the total response rate

� Fisher's exact test

� The Chi squared test for trend

� The t test after allocation of scores

� The Mann-Whitney test

� The Kruskal-Wallis test

� Regression methods

The tests will be reviewed in turn, and their underlying assumptions, their advantages

and their disadvantages will be examined. A sample set of data, shown in Table 2.6,

will be used to demonstrate the calculations for each of the tests. This set of data has

been taken from Iversen et al (1990), which is one of the 81 articles studied in the

preceding section. It reports a study of two hormonal therapies in carcinoma of the

prostate –  a comparison of orchidectomy with a combination of goserelin and

flutamide. All calculated P values are two-sided.

The clinical question to be answered is whether the treatments have equal efficacy

or appear to differ in efficacy. Most of the discussion in this section refers to a

comparison of just two treatments in a clinical trial, but in a comparison of three or

more treatments, the considerations are almost the same.
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Table 2.6. Example tumour response data (Iversen et al, 1990). Numbers of patients in

each response category for each treatment.

Category of response  Orchidectomy  Goserelin and  Total

         flutamide (G + F)

Complete response (CR)  0    1    1

Partial response (PR)   62    69    131

No change (NC)    26    28    54

Progressive disease (PD)  40    21    61

Total     128     119    247

THE CHI SQUARED TEST OF 4 CATEGORIES OF RESPONSE

The Chi squared test for heterogeneity is one of the best known statistical tests. It

is widely available in textbooks of statistics and it will be described here only in outline.

From a table of the observed (O) values, column and row totals are calculated (as in

Table 2.6) and hence the values expected (E) in each cell of the table are obtained. The

Chi squared (χ2) statistic is calculated as

χ2 =  Σ  (O - E)2 / E,

summing over all cells in the table, and this is compared with standard tables of the Chi

squared distribution e.g. in Neave (1981)
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The Chi squared test can be applied to the whole 2 (treatments) × 4 (response

categories) table. Where some of the values in the table are less than 5 (as in the CR

category in Table 2.6), some categories should be combined according to standard

criteria (Armitage & Berry, 1987; Altman, 1991). For example, in Table 2.6, the

categories of CR and PR should be combined for each treatment. Application of the Chi

squared test to the data of Table 2.6 then gives a Chi squared value of 6.16 with 2 degrees

of freedom and a P value of 4.6%, i.e. just significant at the 5% level.

The Chi squared test has advantages of being well known and fairly simple to

perform. In the preceding section, it was found to be currently one of the most used

statistical tests of tumour response data. However, it can be criticised for not making full

use of the information available (Moses et al, 1984). If the Chi squared test is applied to

the 2 (treatments) × 4 (response categories) table, it makes no use of the intrinsic order

in the 4 categories. The Chi squared test is a test of any departure from equality of CR,

PR, NC and PD rates between the two treatments. Because of this, it is relatively

insensitive to those departures from an equal distribution that indicate a difference in

treatment efficacy. For example, by exchanging the data in rows in Table 2.6, a number

of different contingency tables can be obtained, some of which are shown in Table 2.7.

The derived Chi squared values of all these tables are the same, but the tables differ

greatly in their implications for treatment efficacy.
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Table 2.7. Three possible contingency tables formed by exchanging the rows of Table

2.6

        Original        New 1         New 2         New 3

CR  0 1  0 1  62 69  0 1

PR  62 69  40 21  0 1  26 28

NC  26 28  62 69  40 21  40 21

PD  40  21  26  28  26  28  62  69

A further disadvantage of the Chi squared test occurs in relatively small trials in

that several cells of the table may have expected frequencies less than 5, as already

demonstrated in the CR category of Table 2.6. Because it is recommended that some

categories are then combined to avoid this (Armitage & Berry, 1987), there may be some

further loss of the information contained in the data.

THE CHI SQUARED TEST OF THE TOTAL RESPONSE RATE

As well as applying the Chi squared test to the whole 2 (treatments) × 4 (response

categories) table, the Chi squared test can also be applied in a second way by combining

the categories of complete and partial response (giving a category of total response), and

by combining the categories of no change and progressive disease (giving a category of

total non-response), to give a 2 (treatments) × 2 (response categories) table. With this

technique, the value of Chi squared for the data of Table 2.6 is 2.27 with 1 degree of

freedom and the P value is 13.2%. This P value is considerably different to the value of
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4.6% for the Chi squared test of the whole table, and is no longer significant at the 5%

level. This approach to tumour response data has been described by some authors

(Gelman & Zelen, 1987; Leventhal & Wittes, 1988; Simon, 1989). If it is to be used in

the analysis of the results of a clinical trial, then estimation of the numbers of patients to

be entered in the trial is straightforward, since several sets of graphs and tables exist for

this purpose, where the end-point of the trial is a dichotomy such as success or failure of

some kind (Boag et al, 1971; Altman, 1980; George, 1984; Machin & Campbell, 1987;

Leventhal & Wittes, 1988).

The Chi squared test of the total response rate was found in the preceding section

to be currently the most commonly used statistical test of tumour response data. However,

like the Chi squared test of the overall 4 category table, the Chi squared test of the total

response rate has the disadvantage of not making full use of the information available.

The change in the P value shown above from 4.6% to 13.2% (when the number of

response categories is reduced to 2) is an illustration of how loss of information can

affect the P value obtained and hence the conclusion of the study.

If the Chi squared test is applied to the 2 × 2 (treatment versus response) table,

there is loss of the information contained in the data by the distinction between complete

and partial response, and by the distinction between no change and progressive disease.

If a treatment has a higher response rate, it may be expected that more of the responses

will be complete responses, and also that fewer of the non-responses will be progressive

disease. These additional indications of greater treatment efficacy are lost if the 4

response categories are combined to two. For example, in Table 2.6, the total response

rate for G + F is higher than for orchidectomy (59% against 48%); this is associated with

the proportion of total responses which are complete responses being marginally higher

(1/70 against 0/62) and with the proportion of the non-responses which are progressive

disease being considerably lower (21/49 = 43% against 40/66 = 61%).
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This point is further illustrated in Table 2.8 which is another set of tumour

response data taken from the series of 81 papers of the preceding section. The higher

total response rate of the radiotherapy + ACNU arm (89% versus 76%) is accompanied

by a higher proportion of the responses being complete responses (18/31 = 58% versus

8/29 = 28%). This is not mere manipulation of numbers for their own sake; the

distinction between a complete and a partial response is very significant clinically, as is

the distinction between no change and progressive disease. Ideally statistical analysis

should reflect this.

It would be wrong to generalise from only the two example sets of data shown,

but it will be shown in section 2.7 that the points that they illustrate are part of a more

general pattern. The above arguments over what relation is to be expected between CR

rates and PR rates, and so on, will be developed further in section 2.6 which considers

three kinds of model of treatment effect.
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Table 2.8. Second example of tumour response data, taken from Okawa et al (1989),

comparing radiotherapy alone with radiotherapy + ACNU chemotherapy in non-small

cell lung cancer.

Category of response   Radiotherapy   Radiotherapy

       alone     + ACNU

Complete response (CR)   8     18

Partial response (PR)    21     13

No change (NC)     9     4

Progressive disease (PD)   0     0

A further difficulty with a Chi squared test of a 2 × 2 table is over the choice of

dichotomy. In many clinical trials, it may appear that the best dichotomy to use is of total

response against non-response. However, when the total response rate is very high, it

may appear that a better dichotomy to test is of complete response versus absence of

complete response, and similarly, at low response rates, it may appear that a better

dichotomy to test is of progressive disease against freedom from progressive disease.

This was illustrated in the preceding section where six different dichotomies were found

in use in the 81 papers studied. The choice of dichotomy is thus rather arbitrary.

Alternatively, if several tests are done using several dichotomies, there is the problem of

multiple significance testing on the same set of data; this should be avoided if possible

as it can be misleading (Pocock et al, 1987).
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FISHER'S EXACT TEST

Full details of Fisher's exact test will again not be given because of its wide

availability in text books e.g. Armitage & Berry (1987) and Altman (1991). It is a test

used for 2 × 2 tables when the expected value in at least one of the cells of the table is

very small, which is usually taken as meaning less than 5. In this situation it is normally

recommended that the simple Chi squared test for heterogeneity is not used (Armitage &

Berry, 1987; Altman, 1991). At the other extreme, for very large expected values, the

calculations for Fisher's test become more difficult. In the intermediate range, where both

a Fisher's test and a Chi squared  test can be used, the P values obtained are similar

(Altman, 1991).

Fisher's exact test is thus complementary to a Chi squared test of a 2 × 2 table and

can substitute for it when a Chi squared test cannot be used. Fisher's test suffers from just

the same disadvantages as the Chi squared test of a 2 × 2 table in the analysis of tumour

response data, i.e. in making less than full use of the information, and in the choice of a

dichotomy.
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THE CHI SQUARED TEST FOR TREND

The Chi squared test for trend is a statistical test specifically designed for ordered

categorical data (Cochran, 1954; Armitage, 1955; Armitage & Berry, 1987). Its use for

tumour response data has been described by Bartolucci (1984) and he gives a worked

example (although this contains arithmetical errors). Other worked examples are given

in Armitage and Berry (1987) and in Altman (1991). The procedure is first to allocate a

scoring system to the ordered categories; e.g. for tumour response data, CR = +2, PR =

+1, NC = 0, and PD = ­1. A formula is then applied resulting in the test statistic, χ21,t . The

χ21,t value (Chi squared value for trend) is compared with standard tables of the Chi

squared distribution for one degree of freedom. When applied to the data in Table 2.6,

the test gives a χ21,t  value of 5.37, with P = 2.04%.

In some situations, a linear scoring system such as given above may appear a

reasonable assumption, but in others (including tumour response data) the choice of the

scoring system is more arbitrary. This is a major drawback in the use of the test for

tumour response data. The scoring system given above implies that a complete response

is twice as worthwhile with respect to no change as a partial response. In some clinical

situations this 2:1 weighting may seem appropriate; but in others it is clearly

inappropriate if all the patients with a partial response will eventually relapse and

succumb from their disease, while many patients with a complete response are cured

(such as in cancer of the cervix uteri treated by radiotherapy). There may well be

disagreement amongst clinicians over the choice of the scoring system, and yet the

derived statistic and therefore the P value and the conclusion of the study will depend on

the scoring system used. There is also the undesirable possibility of multiple analyses

being done (with different scoring systems), with the reported analysis perhaps chosen

on the basis of minimizing the P value.
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It could be argued that the most natural scoring scale for the Chi squared test for

trend is one that is selected by the data, using the relative numbers of observations in the

categories to define the separation between the scale values. If this is done, and the score

chosen for each category is equal to the middle rank for that category, then the Chi

squared test for trend is almost equivalent to the Mann-Whitney test (which will be

discussed next). The only difference is a factor applied to the standardized deviate of

√{(n -1)/n} (Armitage, 1955) which is near unity for large samples. This equivalence is

a strong argument for use of the Mann-Whitney test in preference to the Chi squared test

for trend since the problem of the choice of a scoring system is obviated. In practice, the

two tests will often give fairly close results (Armitage, 1955).

A further argument against the Chi squared test for trend is that the formula used

and the theory behind the test will not be readily understandable to most clinicians (but

see the next section). A fourth objection is that the test gives a P value, i.e. is a hypothesis

test, but unlike the Mann-Whitney test, does not provide an estimate of the size of the

difference between treatments.

One general advantage of the test is that, in addition to the test for trend, it allows

a test for departure from linearity (Bartolucci, 1984; Armitage & Berry, 1987), but this

does not have any great relevance to the study of tumour response.

THE t TEST AFTER ALLOCATION OF SCORES

This method is described by Moses et al (1984). As with the Chi squared test for

trend, a scoring system is first devised. The mean scores of the patients for each of the

two treatments are calculated and so are the variances, and a t test is applied. The

procedure will often give a result similar to a Mann-Whitney test (Moses et al, 1984).

For the data of Table 2.6, the test gives a value of t of 2.33 with 245 degrees of freedom

(P = 1.96%).

38



The t test with allocated scores is closely related to the Chi squared test for trend

(with the same allocated scores). The formula for the Chi squared test for trend can be

interpreted as a t test with three minor modifications. Firstly, the standard error of the

difference in the mean scores is calculated from the overall variance of the combined

samples rather than from the pooled sample variances; secondly a divisor for the

variance of n1 + n2 replaces n1 + n2 – 2; and finally the whole formula is squared to give

a Chi squared rather than a t statistic.

Since the procedure is almost equivalent to the Chi squared test for trend, it suffers

from all the objections outlined above except that the basis and workings of the test can

be more readily appreciated.
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THE MANN-WHITNEY U TEST

PRINCIPLE

The Mann-Whitney U test is a method of comparing two groups of observations.

In theory, each observation of group A is compared with each observation of group B

and a count is made of the number of comparisons where the former is less than the latter

(Mann & Whitney, 1947; Armitage & Berry, 1987; Altman, 1991). Where the two

observations in one of these comparisons are equal, a value of ½ is added to the count.

The total value is termed UAB.  In practice, to facilitate the determination of UAB, the

observations of each group may be arranged in order and for each group A observation,

a count is made of the number of higher group B observations; the total of these counts

gives the value of UAB.  Alternatively all the observations are put in order and ranked,

and the sum of the ranks of group A observations is used to calculate UAB.  This second

method is known as the Wilcoxon rank sum test but is not really a different test, just a

different way of performing the same test. Which method is quicker to perform depends

on the kind of data being studied. Kendall's S test is also an equivalent test (Armitage &

Berry, 1987).

For small samples, once the value of UAB has been calculated, it is compared

against standard tables e.g. Neave (1981). For large samples, where the size of the larger

sample is greater than 15, and the size of the smaller is greater than 3, the value of UAB

is approximately normally distributed. Denoting the number of observations of group A

by n1, and the number of observations of group B by n2, and using n to denote the sum

of n1 and n2, the expected value of UAB is ½n1n2 and its variance is (Armitage & Berry,

1987)

n1n2(n+1)/12
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Where there are many equal observations, i.e. tied observations, the formula for the

variance must be adjusted by a factor of

1 – {Σ(t3 – t)}/(n3 – n)

where the summation is taken over all groups of tied observations, t being the number

of observations in a particular group of ties (Armitage & Berry, 1987). For small

samples, since this correction is not applied, the significance levels obtained may be

conservative.

IMPORTANCE OF THE VALUE OF U

The calculated value of UAB is the number of pairs of observations, one of group A

and one of group B, where the group A observation is less than the group B observation.

This can be used to give a prediction of the probability of a new group A observation

being less than a new group B observation (Armitage & Berry, 1987; Altman, 1991).

This will be discussed further in section 2.9.

USE OF THE MANN-WHITNEY TEST IN ORDERED CATEGORICAL DATA

The Mann-Whitney test was originally described for continuous numerical data

with no tied observations (Mann & Whitney, 1947). However, it is not necessary for the

observations to be of a numerical quantity such as age. It is only necessary that the

observations can be put into a natural order, and so the Mann-Whitney test can be applied

to ordered qualitative data. Furthermore, the test remains valid when most or all of the

observations are tied with other observations (although clearly not when all are tied on

the same value). Thus the Mann-Whitney test can be applied to data in categories,

provided that the categories fall into a natural order (i.e. it can be applied to ordered

categorical data). In fact, in the extreme situation, when all the observations fall into one

or other of just two categories, the formula for the standardized deviate from the
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Mann-Whitney test reduces to that for the Chi squared test for a 2 × 2 table except for a

ratio of √{n – 1)/n} which is near unity for large samples (Armitage & Berry, 1987).  It

is therefore reasonable to apply the test to short measurement scales where there are only

a small number of categories. The calculations required for a Mann-Whitney test of

ordered categorical data may well be simpler than for non-categorical data since the

effort involved in ordering and ranking is eliminated. For ordered categorical data, all the

categories will contain tied data and Σt = n, where t is the total number of observations

per category. The formula for the variance of UAB then reduces to

n1 n2 (n3 – Σt3) / {12 n (n –1)}.

Although the Mann-Whitney test can readily be performed in the analysis of

ordered categorical data, it has been little used in medical research. Moses et al (1984)

found in a survey of 168 papers published in 1982 in the New England Journal of

Medicine, 47 instances of ordered categorical data and not one instance of the use of the

Mann-Whitney test or other test making use of the order of the categories.

USE OF THE MANN-WHITNEY TEST IN TUMOUR RESPONSE DATA

Since tumour response data is an example of ordered categorical data, the Mann-

Whitney test is a valid test. There are none of the disadvantages of the simple Chi

squared test discussed above; firstly, the Mann-Whitney test is applied to the whole

contingency table without combination of categories (however small the expected

frequencies might be) and secondly, the test makes use of the order of the categories.

However, in the survey described in section 2.2, only one paper was found where the

Mann-Whitney test was applied to tumour response data. Since the Mann-Whitney test

appears to be underused in the analysis of data from ordered categories, a worked

example is worthwhile.
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WORKED EXAMPLE (USING TUMOUR RESPONSE DATA) OF THE MANN-

WHITNEY TEST FOR ORDERED CATEGORICAL DATA

The data of Table 2.9 will be used for this worked example. This is taken from a

trial of two chemotherapy regimes in advanced breast cancer. The calculations are

shown in Table 2.10 and below. In outline, the procedure is to count for each patient

given treatment A (here VAC chemotherapy) how many patients given Treatment B

(VNC chemotherapy) had a better outcome in terms of response.

Consider first the 9 patients given treatment A who had a CR (Table 2.10). There

were no patients given treatment B who had a better outcome but the 4 patients given

treatment B with a CR had an equal outcome (scored ½). The contribution to UAB from

each of these 9 patients is ½ × 4, and the contribution from all 9 is

9 × ½ × 4 = 18.

Table 2.9. Example tumour response data (Green et al, in preparation). Numbers of

patients in each response category for each treatment.

            Treatment A         Treatment B

 Response    VAC chemotherapy    VNC chemotherapy     Total

Complete response (CR)   9     4    13

Partial response (PR)    20     19    39

No change (NC)     14     17    31

Progressive disease (PD)   4     14    18

Total      47     54   101
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Consider now the 20 patients given Treatment A who had a PR. The 4 patients

given Treatment B who had a CR had a better outcome and the 19 with a PR had an

equal outcome. The contribution of each of the 20 patients to UAB is 4 + ½19, and the

total contribution is

20 × (4 + ½19) = 270.

Consider next the 14 patients given Treatment A who had NC. The 4 patients

given Treatment B who had a CR had a better outcome as did the 19 with a PR, and the

17 patients with no change had an equal outcome. The contribution of each of the 14

patients to UAB is 4 + 19 + ½17, and the total contribution is

14 × (4 + 19 + ½17) = 441.

The total contribution from the 4 patients given Treatment A with PD is similarly

4 × {4(CR) + 19(PR) + 17(NC) + ½14(PD)} = 188.

Addition of these 4 contributions to UAB gives the total value, 917. The number of

tied observations in each group t is simply the sum of the numbers of patients given

treatments A and B. The quantity Σt3 needed in calculating the variance is thus

calculated in the same Table 2.10.
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Table 2.10. Worked example of the Mann-Whitney test in the analysis of ordered

categorical data.

       Treatments

 A (VAC) B (VNC)   Contribution to UAB    t           t3

CR 9 4  9 × ½ × 4 = 18      9 + 4 = 13      2197

PR 20 19  20 × (4 + ½19) = 270     20 + 19 = 39  59319

NC  14 17  14 × (4 + 19 + ½17) = 441     14 + 17 = 31  29791

PD  4 14   4 × (4 + 19 + 17 + ½14) = 188   4 + 14 = 18    5832

Totals:
n1=47 n2=54 UAB = 917 Σt3 = 97139
n = 47 + 54 = 101

The expected value of UAB = ½n1n2 = ½ 47 × 54 = 1269

Therefore the difference from the expected value = 1269 - 917 = 352

The variance = n1n2(n3 - Σt3) / {12n(n-1)}

= 47 × 54(1013 - 97139) / (12 × 101 × 100) = 19541

The standard error (SE) = √variance = √19541 = 139.79

Therefore the standardised deviate (the difference from the expected value divided

by the SE) = 352 / 139.79 = 2.518

and this is compared with tables of the standard normal distribution e.g. Neave

(1981) to give a 2-sided P value of 2 × (1 - 0.99408) = 1.2%.
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There is thus strong evidence that Treatment A is better than Treatment B.

For the data of Table 2.6, the value of U is 8725, giving a P value of 3.0%, which

is a similar result to the Chi squared test for trend.

Thus the Mann-Whitney test for ordered categories can be readily done with a hand

calculator and is not appreciably more difficult to perform than a Chi squared test. It can

also be done with any of the major statistical computing packages; data is entered by

allocating values e.g. l, 2, 3 and 4 respectively to the category of response. The choice of

values is unimportant (and does not affect the outcome of the test) as long as they are in

numerical order. However, it is essential that the statistical program includes an

allowance for ties, and not all do so (Altman, 1991).

EXTENSION OF THE MANN-WHITNEY TEST TO THREE OR MORE

TREATMENTS: THE KRUSKAL-WALLIS TEST

The Mann-Whitney test can only be used for the comparison of two treatments. If

three or more treatments are being compared in a clinical trial, a Kruskal-Wallis test can

be applied to the data (Sprent, 1989; Altman, 1991). It is a ranking test exactly equivalent

to the Mann-Whitney test, but in a more generalised form. When it is applied to ordered

categorical data, a correction for ties is necessary (Sprent, 1989). When applied to two

samples, it reduces to a Mann-Whitney test.

REGRESSION MODELS FOR ANALYSIS OF RESPONSE

In a clinical trial with random allocation of treatments, it is quite possible for

imbalances to arise in prognostic factors between the treatment groups; for example, one

treatment group may by chance contain more patients with advanced stages of disease
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than the other(s), and a spurious impression of difference in treatment efficacy may arise.

Information on known prognostic factors can be included in regression models, which

can allow for imbalances. The standard multivariate regression technique for categorical

data is logistic regression; details are given in Altman (1991). If applied to tumour

response data, logistic regression requires the categories of response to be collapsed to a

dichotomy (e.g. to total response versus non-response), and this results in some loss of

information, as already discussed. However, work has also been done on developing

models for the analysis of ordered categorical data (McCullagh, 1980; Anderson, 1984;

Holtbrugge & Schumacher, 1991). This is a promising area of research for the future.

However, in investigating analysis of tumour response, it seems sensible first to try to

optimise the univariate method of analysis, and this dissertation will not consider

multivariate methods in any more detail.
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DISCUSSION

The principal tests that have been considered in this section are summarized in

Table 2.11. This emphasizes that different P values can be obtained for the same set of

data when analyzed by different statistical tests.

Table 2.11.  Summary of the statistical tests reviewed with the P values of each for

analysis of the data of Table 2.6.

The next section will discuss the general considerations in the choice of a

statistical test, but first, it is worthwhile considering what clinical question is being

asked by investigators when carrying out clinical trials and assessing tumour response.

Although the preceding section showed that the commonest method of comparing

Statistical test P value        Comments

Chi squared test of 4 categories
of response

4.6% Loss of information
Well known, simple test

Chi squared test of total
response rate

13.2% Greater loss of information
Well known, simple test

Chi squared test for trend
using linear scale

2.0% Arbitrary scoring system
Uses the order of the categories

t test using linear
scale

2.0% Arbitrary scoring system
Uses the order of the categories

Mann-Whitney test 3.0% Uses the order of the categories
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treatments is in terms of their total response rates, the clinical question is not usually one

of which treatment has the higher total response rate. The definition of total response is

an arbitrary one, and the real question is usually one of which treatment has a higher

overall efficacy. The assessment of total response rates is thus just one (but perhaps the

simplest) method of comparing treatment efficacies.

There are clear theoretical advantages to the tests that make use of the order of the

response categories (the last three of the list of Table 2.11). Recommendations have

been made for their use (Moses et al, 1984; Armitage & Berry, 1987; Altman, 1991),

but the preceding section found them to be rarely used in analysis of tumour response

data. It is unclear why the recommendations are not being followed, but there are a

number of possible reasons. Firstly, there may be a need for wider dissemination of the

recommendations. Secondly, there may be a failure of communication between the

clinicians and statisticians involved in the studies about the nature of tumour response

data, i.e. that the categories are ordered; in some of the 81 papers studied, morbidity of

treatment was analyzed by a Chi squared test for trend, and yet in the same paper,

tumour response was analyzed by the simple Chi squared test. Thirdly, it may be that

simply stating an advantage for the tests is not sufficient to justify the slight increase in

complexity, and quantification of the advantage is required.

A strong theoretical case can be made for use of the Mann-Whitney test in the

analysis of tumour response data since it makes good use of the information available

in the data and does not suffer from the arbitrariness of the scoring systems required by

the Chi squared test for trend and the t test. Comparison of two statistical tests can be

done in terms of their relative efficiency and this will be discussed in the following

section. The need for quantification of the advantages of the Mann-Whitney test in the

analysis of tumour response data is addressed in sections 2.5 and 2.6 in practice and in

theory, respectively.
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2.4 CONSIDERATIONS IN THE CHOICE OF A STATISTICAL TEST

It has been shown in the preceding section that a number of statistical tests can be

applied to tumour response data. It is also true in general that a variety of statistical tests

may be applied to any particular kind of data. It is thus necessary to make a choice

between the available tests, and there are several considerations in this choice, which will

be described. It is not satisfactory simply to apply several or all of the available tests and

select the test reported on the basis of minimizing (or maximizing) the P value; this may

be misleading and lead to errors in the application of the trial results to clinical practice.

SIMPLICITY

Statistical errors are common in medical journals (Altman and Bland, 1991). There

is thus an advantage to a statistical method if it is a simple one, since errors are less likely

to be made, and results can more easily be checked by a reader. There is also an

advantage if a clinician is able or has been able at some time to perform the statistical

test by hand. He is in a better position to appreciate the conclusions of the statistical

analysis and may well be more likely to apply the conclusions of the study to his own

clinical practice. The Chi squared test for trend is an example of a test where the formula

used is not readily understandable; for many, it will be little more than a recipe, and this

is a point against its use.

A more complex statistical method may obscure the poor quality of some of the

clinical data collected. For example, the Kaplan-Meier and logrank survival analyses can

readily be applied to data where many patients have been lost to follow-up, but the level

of follow-up may not be made clear and this may allow bias to enter the results undetected.
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AVAILABILITY OF COMPUTER SOFTWARE

Increasingly, statistical analysis is being done by computer and this has

advantages of speed and generally increased reliability. Easy availability of computer

software for a particular test is thus an advantage. However, not all software is free from

errors (Altman, 1991) and there may be problems if the software is used by people not

familiar with its operation or interpretation.

RELATIVE EFFICIENCY

Two different statistical tests applied to the same set of data will often give

different results - if only slightly. This has been shown in the previous section where the

P values from the different tests ranged from 2.0% to 13.2%. If one test is consistently

better than another in the sense of being more likely to detect a difference when it exists,

then it is said to be more efficient. It can do this by making more use of the information

contained in the data.

The concept of efficiency is central to this dissertation. Two statistical tests

(denoted test A and test B) can be compared by their relative efficiency which is denoted

by eA,B.  If the two tests are equally efficient, then the efficiency of test A relative to test

B eA,B will be 1.0. If test A is the more efficient, then eA,B will be greater than 1.0, and if

test B is the more efficient then eA,B will be less than 1.0. Relative efficiency can be

measured in terms of the ratio of the numbers of patients required by the two tests to

answer the same clinical question. A formal definition can be given as follows (Pratt and

Gibbons, 1981).

If test A requires nA observations to detect a difference δ at a significance level α

with power 1-β and test B requires nB observations to do the same, then the

relative efficiency of test A relative to test B eA,B is given by the ratio nB/nA.
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In general the relative efficiency of two tests will depend principally on the type of

difference to be detected i.e. on the alternative hypothesis; it is much less dependent on

the significance level a, the power 1- β and the size of the difference δ.

The consequence of using a less efficient test when a more efficient test is

available can be explained in terms of the numbers of patients to be entered in clinical

trials. As an example, if the relative efficiency eA,B is 1.5, then statistical test A requires

only 1/1.5 as many patients, i.e. 2/3 as many patients to be entered in the clinical trial as

test B. Since many clinical trials are limited by problems of patient recruitment, making

maximum use of the available clinical information is important and can be achieved by

selecting the statistical test which has the greatest efficiency.

ESTIMATION OF RELATIVE EFFICIENCY

A number of methods can be used for estimating the efficiency of one test relative

to another:

� By comparison of the power functions for mathematical models of the data

� By computer simulation for models of data

� By performing the statistical tests on a number of typical sets of data and

comparing the results in three ways (only the first of these has been previously

described - the other two are new methods proposed here)

- by counting the numbers of significant results

- by a scatter plot of the z-values

- from the ratios of the z-values.

In the first method, standard techniques are used to calculate the relation between

the power of each statistical test and the number of patients entered (i.e. the power

function). From the two power functions, the relative efficiency is calculated. The
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limitation of this method is that assumptions are needed concerning what effects of

treatment are to be expected - in statistical terminology, what alternative hypothesis is

assumed. (For example, for tumour response data, it is necessary to make assumptions

of the relation between CR, PR, NC and PD rates and formulate a model or models of

treatment effect. This is done in this dissertation in the modelling in section 2.6.) It will

then be necessary to test whether the assumed model is valid before giving weight to

estimates of relative efficiency which have been derived from it. This method has been

extensively used to calculate various values of relative efficiency of a number of

statistical tests using different alternative hypotheses.

The second technique has been used where there are difficulties in evaluating the

power functions of the two tests; a computer is used to repeatedly simulate the problem,

typically 1000 times. This has been used to evaluate the power function of the logrank

test (Breslow, 1984). Like the first technique, this is limited by the need to assume some

model of treatment effect.

In the third set of methods, a number of sets of data are collected and analyzed

using each of the two statistical tests. It is necessary to select sets of data that are alike

in some way. No two sets of data are the same, but it will often be possible to define

sets of data with features in common, e.g. tumour response data. The conclusions can

then apply to similar sets of data, just as the conclusions from a study of patients with

a condition can be applied to a future patient with a similar condition. This third set of

methods has been little used, and it appears that only the first of them (counting the

number of significant results) has ever been used previously. Why this approach has

been little used in the past is not clear, but it may reflect the very large number of types

of data to which statistical tests can be applied.
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Counts of results significant at 5%

By simply counting the number of results significant at the arbitrary cutoff of 5%

(or other significance level), a qualitative estimate of relative efficiency may be obtained.

The statistical test with the higher count of significant results is likely to be the more

efficient. Mann and Whitney (1947) used this technique to demonstrate the superiority

of their test over an alternative. However, it gives no quantitative estimate of relative

efficiency and it overemphasizes the arbitrary cutoff (e.g. 5%) or cutoffs used.

Scatter plot of z-values

The simple method just described can be extended by plotting the sets of data as a

scatter diagram, plotting the z-value with corresponding P value for each set of data for

one test against the z-value with corresponding P value for the same set of data for the

other test. (The z-value from a statistical test is the equivalent value from a standard

normal distribution; for example, a z-value of 1.96 is equivalent to a P value of 5%. A

further description of z-values is given in Appendix B.)

As an example, Fig. 2.1 shows this technique for a single set of data, namely that

of Table 2.6 (already extensively used as an example). In the previous section it was

shown that the P value for this set of data analyzed by the Chi squared test of the total

response rate was 13.2% (equivalent z-value 1.51) and the P value for a Mann-Whitney

analysis was 3.0% (equivalent z-value 2.18). These values are represented by the cross

on Fig. 2.1.

The sloping line of Fig. 2.1 is the line of equality between the tests. If the two tests

are exactly equivalent, all the points will lie on the line of equality. If the tests are roughly

equivalent, and there are only minor differences between the tests, the points will be

clustered around this line. If a difference in efficiency exists, the points will have a
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tendency to lie either above or below the line of equality, depending on which test is the

more efficient.

Fig. 2.1. Representation of the z-values (and corresponding P values) of the data of Table

2.6 analyzed by both the Mann-Whitney test and the Chi squared test of total response.

The sloping line is a line of equality between the tests. The vertical and horizontal lines

demarcate results significant at 5% from those which are not.

The ratio of the z-values

It is shown in Appendix D that an estimate of the relative efficiency for two

statistical tests can be given by the square of the ratio of the z-values from analysis of the

same set of data by the two tests. In the above example, the estimate for the efficiency of

the Mann-Whitney test relative to the Chi squared test of the total response rate is

(2.18/1.51)2, i.e. 2.08. Furthermore, when a large number of data sets are analyzed by
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each of two tests, giving a z-value denoted zA for test A for each set of data, and a z-value

denoted zB for test B, an overall estimate of the relative efficiency eA,B can be obtained

from the median value of (zA/zB)2. This is a new result and is applied in sections 2.5 and

3.4 of this dissertation.

56



2.5 STATISTICAL ANALYSIS OF TUMOUR RESPONSE DATA: COMPARISON

OF THE CHI SQUARED TEST WITH THE MANN-WHITNEY TEST

INTRODUCTION

As discussed in section 2.1, response of solid tumours to cancer treatment is

usually assessed by allocation to one of 4 categories, namely complete response (CR),

partial response (PR), no change (NC) and progressive disease (PD).

There are several statistical methods that can be applied to the analysis of the

tumour response data from a clinical trial comparing two or more treatments, and these

were discussed in section 2.3.  Section 2.2 showed that a variety of different statistical

techniques are being used in practice. The most commonly used method is to collapse

the 4 categories to the 2 categories of responders (complete plus partial responses) and

non-responders (no change plus progressive disease); and then assess the combined

table by either the Chi squared test or Fisher's exact test (the latter being used when the

expected frequencies in some of the categories are small).

A second commonly used method is to retain the original 4 categories of

classification of response and to perform a Chi squared test on the 4 × 2 (response

versus treatment) contingency table, or on the 4 × a contingency table where a is the

number of treatments being compared, i.e. the number of arms of the trial. As discussed

in section 2.3, both these applications of the Chi squared test can be criticised because

full use is not made of the information available in the clinical data. A third method, the

Mann-Whitney test has theoretical advantages (which were discussed in section 2.3).

However, section 2.2 showed that it is rarely used in the analysis of tumour response

data in Oncology.
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Whether these theoretical arguments are of any practical importance is addressed

in the current section. A total of 74 sets of tumour response data were all analyzed by

each of these 3 methods and the derived P values were compared. In section 2.3, a

comparison was made of these 3 (and other) methods on the set of tumour response data

shown in Table 2.6 and the current section extends this to a larger number.

The results of the comparison of statistical tests are shown graphically by plots of

the z- and associated P values, as discussed in section 2.4. The results are also used to

estimate the relative efficiencies of the 3 tests; relative efficiency was discussed in

section 2.4, and can be briefly described as follows. If the relative efficiency eA,B for test

A relative to test B is greater than 1.0, then fewer patients are needed in a clinical trial

if analyzed by statistical test A instead of test B; and the ratio of the numbers of patients

needed is 1/eA,B.

The Chi squared test for trend has also been advocated for use in the analysis of

ordered categorical data in general (Armitage & Berry, 1987) and in the analysis of

tumour response data in particular (Bartolucci, 1984).  However, because of the

difficulties in devising a scoring system, and because of the equivalence to the Mann-

Whitney test on certain scoring systems, as discussed in section 2.3, the Chi squared test

for trend is not included in this comparison of techniques. A further worthwhile

comparison would be with regression methods of tumour response data, taking into

account the prognostic factors. These may improve on the reliability of analyses done

without prognostic factor information, but to include these methods in the work of this

section would require the full data sets including prognostic factor information.

58



METHODS

By a review of seven specialist Oncology journals, 81 articles were identified,

published between July 1988 and December 1990 inclusive, where tumour response was

compared between two or more treatments in a randomised trial. These articles are the

same series as were analyzed in the survey described in section 2.2 and further details

are given there.

In 11 papers, response data were reported by allocation into only 2 categories

(although in several cases it had been collected according to a 3 or 4 category system of

classification). These 11 papers were therefore not suitable for re-analysis since for 2

categories, a Mann-Whitney test is almost exactly identical to a Chi squared test

(Armitage & Berry, 1987). Four of the remaining 70 papers contained two separate sets

of data, giving a total of 74 sets of data for re-analysis.

Several papers excluded some patients as being non-evaluable. Some authorities

urge that patients unable to complete therapy should be judged as failures of treatment

(Hoogstraten, 1984), but for the purposes of this comparison, the rates were used as

reported.

Although most papers reported tumour response rates according to the standard 4

categories (Miller et al 1981), 7 papers used an additional category such as "minimal

response" (a subdivision of no change which, for example, was defined as a decrease in

the sum of the products of diameters of masses of between 25% and 50%). Use of such

categories can be criticised on the basis that distinction from no change can be very

unreliable (Moertel & Hanley, 1976). Since the aim of this section is to compare use of

2 categories of response with use of the standard 4 categories, any data reported in a
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category of minimal response was combined with that in the category of no change for

this re-analysis.

In 18 papers, the results were reported by allocation to 3 rather than 4 categories.

In 4 of these papers, the clinical situation was such that very few if any patients would

be expected in the 4th category (the tumour was very sensitive or very insensitive to the

treatments given). In the remaining 14 papers, it would be expected that all the standard

4 categories of response would have contained appreciable numbers of patients. All of

these 18 papers were included in the main analyses.

STATISTICAL ANALYSES

Three statistical approaches were used for re-analysis of each of the 74 sets of data.

Firstly, the 4 categories of classification were reduced to 2 by combination of the

categories of complete response with partial response and by combination of the

categories of no change with progressive disease to give the total responders and total

non-responders respectively. Then the 2 categories were compared between the 2 or

more treatments by a Chi squared test or (in 11 cases) by Fisher's exact test, when one

or more of the expected values was less than 5, according to the recommendations of

Armitage & Berry (1987).  The Chi squared test in all 2 × 2 tables included a correction

for continuity as recommended by Armitage & Berry (1987) and Altman (1991).

In the second approach, the response versus treatment contingency tables were

analyzed by a Chi squared test for heterogeneity using the standard 4 categories of

classification or by combining categories to ensure that most or all expected

frequencies were at least 5 according to the recommendations of Armitage & Berry

(1987). In 20 sets of data, in order to achieve expected frequencies of at least 5, it was

necessary to combine categories in pairs so that the 4 categories reduced to 2 categories
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- the intended Chi squared test of 4 categories of classification in these cases thus became

identical to the Chi squared test of the total response rate. These 20 sets of data were

included in all the analyses. Thus the comparison between the tests was on an "intention

to analyze" basis, analogous to "intention to treat" analyses in clinical trials.

The third approach was to analyze the response versus treatment contingency tables

by a Mann-Whitney test using an allowance for ties as recommended by Armitage &

Berry (1987). If there were more than two treatments compared in the reported trial, a

Kruskal-Wallis test was used instead (this is the direct extension of the Mann-Whitney

test when the number of treatments is more than two).

Except for the exact test which was done by hand, all calculations were done using

a program which was written for the purpose in Mallard BASIC extended by Lightening

Basic software (CP Software, UK), and run on an Amstrad PCW 8512 personal

computer. The program was verified against 16 published worked examples (10

examples of a Chi squared analysis, 5 examples of a Mann-Whitney analysis for ordered

categorical data, and one example of a Kruskal-Wallis analysis) in 6 publications (Neave,

1981; Moses et al, 1984; Armitage & Berry, 1987; Sprent, 1989; Morton et al, 1990;

Altman, 1991).

For each of these statistical approaches, the test statistic was converted to a 2-sided

z-value (the standardised normal deviate). For a Chi squared test on a 2 × 2 table, the

z-value was obtained as the square root of Σ(O-E)2/E since the χ12 distribution is the

square of the standard normal distribution. For a Chi squared test on a larger table, where

the number of degrees of freedom v is greater than one, the z-value was obtained by

linear interpolation using the empirical approximately linear relationship between χv2

and z2 together with tabulated values of χv2 at particular levels of significance (see

Appendix E). The inaccuracy introduced to the value of z by this linear interpolation was
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estimated as a maximum of 0.04 (equivalent to a maximum inaccuracy of 0.5% for any

z-value greater than 1.96). For a Mann-Whitney test the z-value was obtained by the

standard formulae for U and its variance with allowance for ties (Armitage & Berry,

1987) as discussed in section 2.3. In the cases of 3 sets of data, the number of patients

per treatment in the study was less than 16 and the normal approximation for the

distribution of U may not have been accurate (Armitage & Berry, 1987).  However, no

great changes to the conclusions of this section would result if these 3 sets of data were

excluded.

The three statistical approaches were compared in three pairs by scatter plots of the

z-values obtained (an example is shown in the preceding section). They were also

compared in terms of their relative efficiency by the method derived in Appendix D,

which may be summarized as follows. Firstly, a number of data sets are collected from

a particular field of research and each data set is analyzed by each of two statistical tests

A and B. The data sets that are significant at 5% are selected and the relative efficiency

of test A relative to test B, eA,B, can then be estimated by the median value of (zA/zB)2 from

the significant sets of data, where zA is the z-value obtained from test A, and zB is the

z-value obtained from test B. When only two tests are being compared, it seems

reasonable to include data sets significant at 5% by either of the two tests (as opposed to

only those data sets significant by both tests). This raises a problem in the current section,

which is a comparison of three statistical approaches, since this policy would result in

the selection of three different series of data sets for the three pairwise comparisons. It

was felt preferable to obtain a single series of data sets, and consequently the data sets

were selected for estimation of the relative efficiency if the result was significant by the

test which performed best on the preliminary analyses, which was the Mann-Whitney

test.
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RESULTS

NUMBERS OF SIGNIFICANT RESULTS AT 5%

Of the 74 sets of data analyzed, 19 sets were significant at 5% by a Chi squared test

of the total response rate, 23 were significant by a Chi squared test of 4 categories of

response and 27 were significant by a Mann-Whitney test. Only 3 or 4 significant results

would have been expected by chance (i.e. 1 in 20).

All of the 19 sets significant by a Chi squared test of total response were significant

by both a Chi squared test of 4 categories of response and by a Mann-Whitney test; and

thus the numbers of additional significant sets by these two tests were 4 and 8 respectively.

Of the 23 sets significant by a Chi squared test of 4 categories of response, all but one

were also significant by a Mann-Whitney test; a further 5 were significant only by the

latter test. These points will be illustrated by the figures of the following subsection.

RELATIONSHIPS BETWEEN z-VALUES AND BETWEEN P VALUES

Figure 2.2 plots the relationship between the z-values by the Mann-Whitney test and

by the Chi squared test of total response. Each of the points represents one of the 74 sets

of data, plotting the z-value for the Mann-Whitney test against the z-value for the Chi

squared test of total response. The corresponding P values are also given on each axis.

The sloping line is a line of equality between the tests.  If there were only minor

differences between the tests, the points would be clustered around this line. However,

there is a clear tendency for the points to lie above this line i.e. for the z-values by the

Mann-Whitney test to be greater and the P values to be more extreme.
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Figure 2.2. Comparison of the z-values (and the corresponding P values) for 74 sets of

tumour response data analyzed by both the Mann-Whitney test and the Chi squared test

of total response (Fisher's exact test was substituted for the Chi squared test in 11 cases

because of small numbers). The sloping line is a line of equality between the tests. The

vertical and horizontal lines demarcate results significant at 5% for each of the two tests

from those which are not.

The points can be considered in 4 quadrants demarcated by z-values of 1.960

(equivalent to a two-sided P value of 5%), and denoted by zones A, B, C and D in Fig.

2.2. In zone B are the 19 points representing the sets of data significant by both the Chi

squared test of total response and the Mann-Whitney test. The tendency for the points to

lie above the line of equality is especially marked here; 15 of the 19 do so. This scatter

around the line is significantly different from an equal distribution at P = 2% by the sign

test. This is good evidence for the superiority of the Mann-Whitney test over the Chi

squared test of total response.
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In zone A are the 8 points representing the 8 sets of data significant at 5% by the

Mann-Whitney test but not by the Chi squared test of total response. There are no points

in zone D illustrating the lack of converse sets of data.  In zone C are points representing

sets of data not significant at 5% by either test. These are roughly evenly distributed

about the line of equality except for a number of z-values of zero for the Chi squared test,

reflecting the effect of the continuity correction of the Chi squared test which will give

a Chi squared value of zero whenever O-E is less than 0.5.

Figure 2.3 in the same way plots the z-values for the Chi squared test of 4

categories of response against the z-values for the Chi squared test of the total response

rate. There is some tendency for the points to lie above the line of equality and in the right

upper quadrant, 9 lie above the line, 3 lie below it and 7 lie on the line (for these 7 points,

the Chi squared test on 4 categories reduced to a Chi squared test of total response

because small numbers forced amalgamation of categories). There is thus some evidence

that the distribution differs from an even distribution (P = 15% by the sign test).
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Figure 2.3. Comparison of the z-values (and the corresponding P values) for 74 sets of

tumour response data analyzed by both the Chi squared test of 4 categories of response

and the Chi squared test of total response (or Fisher's exact test in 11 cases). The sloping

line is a line of equality between the tests. The vertical and horizontal lines demarcate

results significant at 5% for each of the two tests from those which are not.

Figure 2.4 is the third comparison of tests, plotting the z-values for the Mann-

Whitney test against the z-values for the Chi squared test for 4 categories of response.

Again, there is a tendency for points to lie above the line of equality and in the right upper

quadrant, 19 of the 22 points lie above the line (P = 0.1% by the sign test). The figure

shows the one set of data which was significant by a Chi squared test of 4 categories of

response but not by the Mann-Whitney test. On inspection of the trial from which this

data set was taken, there were no special features to indicate why this was so, and it is

concluded that the cause is merely random variability between data sets.
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Figure 2.4. Comparison of the z-values (and the corresponding P values) for 74 sets of

tumour response data analyzed by both the Mann-Whitney test and the Chi squared test

of 4 categories of response. The sloping line is a line of equality between the tests. The

vertical and horizontal lines demarcate results significant at 5% for each of the two tests

from those which are not.

ESTIMATION OF RELATIVE EFFICIENCY

Since there is good evidence from the results already presented that the Mann-

Whitney test is more efficient than either of the applications of the Chi squared test, the

relative efficiencies of the three tests were estimated from the 27 sets of data significant

at 5% by the Mann-Whitney test.

The first comparison is of the Mann-Whitney test with the Chi squared test of the

total response rate. The relative efficiency is estimated from the median value of the
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square of the ratio of the z-values (Appendix D) giving an estimate of the efficiency of

the Mann-Whitney test relative to the Chi squared of the total response rate of 1.32 (95%

confidence interval 1.11 to 1.94).

In the same way, an estimate for the efficiency of the Chi squared test of 4

categories of response relative to the Chi squared test of total response was 1.01 (95%

confidence interval 1.00 to 1.31); and the efficiency of the Mann-Whitney test relative

to a Chi squared test of 4 categories of response was 1.21 (95% confidence interval 1.09

to 1.32).

EFFECTS ON THE CONCLUSIONS OF THE STUDIES

As noted above, there were 8 sets of data (reported in 8 papers) containing results

which were significant at 5% by a Mann-Whitney test but not significant by a Chi

squared test of the total response rate. As detailed in Table 2.12, one paper reported no

statistical analysis, and in a second, it was unclear. Two papers reported non-significant

analyses, and one paper incorrectly calculated a significant result. Only 3 of the 8 papers

(data sets numbered 36, 47, and 49) correctly reported significant statistical analyses; one

reported a Chi squared test of 4 categories of response, the second reported a Chi squared

test of the total response rate after adjustment for prognostic factors by multivariate

analysis, and the third reported both a Mann-Whitney test and a Chi squared test of the

dichotomy of CR versus absence of CR. In all these 3 papers, other analyses of tumour

response not significant at 5% were also done and the overall conclusions were equivocal.

Thus in all of these 8 papers, the overall conclusion concerning response would have

been changed if the Mann-Whitney test had been used as the principle method of analysis.
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Table 2.12 Details of the 8 data sets significant at 5% by the Mann-Whitney test but not

by the Chi squared test of the total response rate. Three of the papers reported several

analyses. Data set number 36 is the one shown in Table 2.6.

Abbreviations: MW = Mann-Whitney, cats. = categories, sig. = significant(ly), CI =
confidence interval, stat. = statistical, NS = not significant.
* P values marked with an asterisk were derived by Fisher's exact test in place of the Chi
squared test as described in the text.
** This reported P value of 0.39% appears to be an error through inappropriate application of
a Chi squared test to the entire contingency table where the counts of PD, NC, PR, and CR
were 3, 5, 0, 0 and 0, 5, 2, 0 respectively in the two treatment groups.
The discrepancy in data set numbered 47 between the calculated P value by the Chi squared
test of response (7.6%) and the published value (6%) is explained if the published value was
obtained without a continuity correction. The discrepancies between the calculated and
published P values in data set 49 by the Mann-Whitney test and in data set 64 by the Chi
squared test cannot be explained other than by errors or misprints in the publication.

Data
set

P value by Reported in publication

MW test Chi squared
test*

P value Analysis done Conclusion given

26 3.2% 40.0%* 0.39%** Chi squared 4
cats.

sig. higher PR and SD

28 0.5% 18.5%* none none objective response better

36 3.0% 13.2% 4.7% Chi squared 4
cats.

(11% difference in
response rate, 95% CI
±13%) Overall equivocal

47 2.9% 7.6% 6%

5%

Chi squared
response
multivariate
analysis

approached stat. sig.

reached stat. sig.

49 0.9% 28.9% NS

< 5%

< 0.1%

Chi squared
response
Chi squared of
CR rate
MW test

Overall:
CR rates sig. different

64 3.1% 8.5% 18% Chi squared
response

no sig. difference

65 4.0% 11.0%* none unclear equivocal

66 0.1% 7.6% 7% Chi squared
response

... appears less active ...

69



DISCUSSION

The sets of data used in this comparative re-analysis include a range of tumour

types and treatment comparisons, as discussed in section 2.2, and may be taken to some

extent as representative of tumour response data in the literature.

The simplest method of comparison of statistical tests is by a count of results

significant at 5% in analysis of typical sets of data. This has historical justification (Mann

& Whitney, 1947), and assumes that in at least some of the sets of data, the null

hypothesis was not true, i.e. there was a real difference in treatment effect. Using this

method, the most efficient statistical test for the tumour response data was the Mann-

Whitney test with 27 significant results, the Chi squared test of 4 categories of response

was less efficient with 23 significant results and the Chi squared test of the total response

rate was least efficient with 19 significant results. These findings are in line with the

theoretical arguments based on how much of the available information is used by the

tests, discussed in section 2.3.

However, a count of results significant at 5% overemphasizes the 5% cutoff, and

a better comparison of the tests is by a plot of all the z-values as in Figs 2.2 to 2.4. For

example, Fig. 2.2 shows that there is a general tendency for z-values (and therefore P

values) to be more extreme for a Mann-Whitney test than a Chi squared test of the total

response rate, and this is not limited to around the 5% cutoff. All these three figures show

a tendency for the points to lie above the line of equality indicating an advantage for the

test plotted as the y axis in each case. This confirms the findings from the simple counts

of significant results of the most efficient method of analysis being a Mann-Whitney test,

followed by a Chi squared test of 4 categories of response, followed by a Chi squared

test of the total response rate.

70



The advantage of one statistical test relative to another can be quantified by the

relative efficiency, which was here estimated from the ratio of the z-values of the 27

significant sets of data. The principal finding was that the Mann-Whitney test had an

efficiency of 1.32 relative to  a Chi squared test of the total response rate (95%

confidence interval 1.11 to 1.94). This again implies that the Mann-Whitney test is more

efficient than the Chi squared test of the total response rate. The other calculations

indicated the efficiency of the Chi squared test of 4 categories of response to be

intermediate.

These estimates of relative efficiency are probably underestimates since in 9 of the

27 sets of data significant by the Mann-Whitney test, the results were reported (and

available for this comparative re-analysis) in terms of 3 rather than 4 categories. If these

9 sets of data are excluded, a higher estimate is obtained of 1.45 for the relative efficiency

of the Mann-Whitney test relative to the Chi squared test of the total response rate. It is

unwise to put too much weight on subgroup analyses and so the best estimate for the

value of this relative efficiency is probably around 1.4. Exclusion of the 9 sets of data

reported by 3 categories gives similar small increases in the other estimates of relative

efficiency.

The practical relevance of a relative efficiency of 1.4 will be discussed more fully

in section 2.10, but a clear illustration is the 8 papers where the data set was significant

at the 5% level by the Mann-Whitney test but not by the Chi squared test of the total

response rate. These 8 papers represented 11% of the total number of data sets, and none

of them reported unequivocally that the results were significant at the 5% level. It thus

seems that treatment differences are currently being under-reported due to suboptimal

statistical analysis.
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2.6 THE EFFICIENCY OF STATISTICAL ANALYSIS OF TUMOUR

RESPONSE DATA: RELATION TO CATEGORIES OF CLASSIFICATION

AND MODELS OF TREATMENT EFFECT

INTRODUCTION

A number of statistical techniques can be applied to tumour response data as

detailed in section 2.3. The conclusion of that section was that the Mann-Whitney test

has theoretical advantages that could make it the preferred choice. However, section 2.2

found that the Mann-Whitney test was rarely used in practice; the test most often used

was the Chi squared test after collapsing the 4 standard categories of response to a

dichotomy of total response (CR + PR) versus total non-response (NC + PD). There

seems to be a need to quantify the advantages of the Mann-Whitney test over a simple

Chi squared test. Section 2.5 estimated the advantage of the Mann-Whitney test by

re-analysis of a number of published sets of tumour response data, and the current section

does so by consideration of a number of theoretical models of tumour response.

The primary aim of the modelling in this section is thus to compare the Mann-

Whitney test using 4 categories of response with the Chi squared test using 2 categories

of response. In fact a Chi squared test and a Mann-Whitney test can be shown to be

identical when there are only 2 categories of classification, provided that the number of

observations is large (Armitage & Berry, 1987). The problem therefore reduces to a

comparison of classification by 4 categories with classification by 2 categories when all

analyses are done by a Mann-Whitney test. The standard way to compare two statistical

tests mathematically is in terms of their relative efficiency. The current section compares

statistical methods of analysis of tumour response by their asymptotic relative efficiency

i.e. the value that the relative efficiency approaches when the number of patients is very

large, and the difference in outcome to be detected is very small. The reason for
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calculating the relative efficiency under asymptotic conditions is that this simplifies the

calculations. The value of the relative efficiency under more practical conditions is often

taken to be close to the asymptotic value.

In order to calculate the value of the asymptotic relative efficiency, it is necessary

to make some assumptions of the relationships between rates of CR, PR, NC, and PD

when the efficacy of treatment changes. Each set of assumptions will form one model of

treatment effect.

Some subsidiary aims of the modelling in this section are to compare the standard

4 categories for assessment of response with other systems of assessment (with all

analyses done by a Mann-Whitney test); the number of categories of assessment could

be increased beyond 4 and the effect of this on the efficiency of analysis is explored, and

some work is done on how the categories are best defined (given a fixed number of

categories). This section is the most technical in the dissertation (except for the

Appendices), but this is unavoidable.
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METHODS

NOTATION OF MODELS

Three types of model were considered and are described here mainly by a graphical

representation of the interrelation of PD, NC, PR and CR rates (or whichever system of

classification is considered).

In biological systems in general, the graph of the proportion of individuals showing

an effect when plotted against the intensity of the stimulus is often found to be a sigmoid

shape similar to that shown in Fig. 2.5 (Armitage & Berry, 1987).

Figure 2.5. A common biological relation between the proportion of individuals

showing an effect and the intensity of the stimulus.

In Oncology, the probability of achieving a particular effect on a tumour is often

assumed to have a similar sigmoid relation to dose of radiation (Sutton & Hendry, 1985)

or dose of drug (Wilkinson & Fox, 1985). There is some clinical evidence supporting this,

for example in the control rates of Hodgkin's disease with radiation (Kaplan, 1966).  The
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graph drawn in Fig. 2.5 is in fact the cumulative normal distribution function (see

Appendix B) with the intervals on the x axis each one standard deviation. In this section

the proportion of patients having a response (complete or partial) by standard criteria, is

represented graphically against treatment efficacy on the x axis; and treatment efficacy

E is defined such that the graph of the total response rate plotted against E is the

cumulative normal distribution curve. The total response rate is represented by f2(E), and

thus

f2(E)  = Φ(E)

(Φ(E) being the cumulative normal distribution function of efficacy E).

Where a model contains 4 categories of response, it is defined by two other

functions (represented graphically by the two other curves in Fig. 2.6). The function f1(E)

is the sum of the proportions of no change, partial response and complete response. It

will clearly be greater than or equal to f2(E) for all values of treatment efficacy E and will

progressively increase as E increases. The function f3(E)is the proportion of complete

responses. It will be less than or equal to f2(E) but will similarly progressively increase

as E increases.

Where more than 4 categories of response are considered in a model, the notation

is extended in an obvious way. If the number of categories is k, there will be k-1

boundaries between the categories which will be represented by f1(E) to fk-1(E).
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Figure 2.6. Format for specifying models. For 4 categories, f2(E) is the sum of PR and

CR rates, and is fixed for all models as the cumulative normal distribution curve. The

scale of the x axis (treatment efficacy, E) is defined such that this is so. A model is

specified by f1(E) (the sum of the NC, PR, and CR rates) and f3(E) (the CR rate). Thus

the PD rate = 1- f1(E),

the NC rate = f1(E) - f2(E),

the PR rate = f2(E) - f3(E),  and

the CR rate = f3(E).

For example, at a response rate of 30% in the diagram, the PD rate is 1 - 88% = 12%, the

NC rate is 88% - 32% = 56%, the PR rate is 32% - 3% = 29%, and the CR rate is 3%.

The whole of these functions would not normally be demonstrated clinically; very

low response rates will not be seen in very active drugs, and very high response rates will

not be seen with resistant tumours, where the dose of treatment will be limited by toxicity.

However, the whole of these functions potentially exist, and in a clinical trial comparing

two treatments, a particular section of the diagram will be relevant (as in Fig. 2.7),

corresponding to the range of efficacies of the treatments being compared.
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Figure 2.7. The portion of Fig. 2.6 relevant in a clinical trial comparing two treatments

with two different efficacies E1 and E2.

MODELS EXAMINED AND ANALYSES PERFORMED

Model 1: Lateral shift model

The model is defined in Fig. 2.8 and its legend. The model implies that for any

given effect of treatment (such as complete response), there will be a low level of

treatment efficacy at which no individuals show the effect, and also a high level of

treatment efficacy at which all the individuals show the effect. These seem to be

reasonable assumptions; they apply to in vitro systems for many effects e.g. the

relation between the dose of a drug and cell death. One consequence of this model is

that as the total response rate increases, the proportion of responses which are complete

response increases, and this seems reasonable a priori. The corresponding implication

for the non-responses is that as the non-response rate decreases, fewer and fewer of the

non-responses are progressive disease.
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Figure 2.8. Lateral shift model. The total response curve f2(E) is shifted laterally by w

units to the left to give f1(E) and by w units to the right to give f3(E).  The category "width"

is thus measured by w. The units are those of a standardised normal deviate.  Thus

f1(E)  = Φ(E+w) and

f3(E)  = Φ(E-w)

In statistical terms, the sigmoid shape of the relation implies that the threshold level

of treatment efficacy at which the various individuals show an effect is normally

distributed. The similarity of the sigmoid shapes of all of the curves implies a similar

effect of treatment at all levels of effect (in statistical terms, the variances of the

thresholds of all the effects are equal). This assumption is not an obvious one and

requires to be confirmed or refuted by clinical data experimentally.  Some evidence in

favour of this assumption arises in the following section.

To reduce the number of alternatives considered, the left shift (to give f1(E)) was always

kept equal to the right shift (to give f3(E)).  Furthermore, when a system of more then 4
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categories was considered, the number of categories was kept even, with half of the

categories being divisions of the total responses, and half of the categories being

divisions of non-response. Clearly very many more alternatives could be considered by

relaxing these constraints, but it seems unlikely that the conclusions of this section will

be greatly altered by doing so.

Three analyses were done within this model. Firstly, keeping the number of

categories of assessment fixed at 4, the width of the central 2 categories (of PR and of

NC) w was varied from 0.1 standardised deviate units (graphs la and 3a in Fig. 2.9)

through intermediate values of w in 0.1 unit intervals (e.g. graphs 1b and 3b) to a

maximum of 4.0 units (graphs 1c and 3c).

Figure 2.9. First analysis using the lateral shift model. The category width w was varied

from 0.1 units (graphs la and 3a) to 4.0 units (graphs 1c and 3c) through intermediate

values (e.g. 1.0 units in graphs 1b and 3b) in 0.1 unit increments.
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For each value of w, the asymptotic relative efficiency was calculated for a system

of 4 categories of classification relative to a system of 2 categories (CR + PR versus NC

+ PD) by the method detailed below.

In a second analysis, a similar procedure was carried out with the number of

categories of assessment k equal to 6, 8, 10 and so on up to a maximum of 32 categories.

The width of each of the central k-2 categories (w) was again varied from a minimum of

0.1 units in steps of 0.1 units to a maximum value governed by a limitation to the value

of w × (k-2) of 8.4. The data obtained were used to assess the maximum asymptotic

efficiency (over the range of values of w considered) for each value of k.

In the third analysis, the data derived in the first two analyses was also used to

assess the proportions of observations in the different categories at peak asymptotic

efficiency.
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Model 2: Equal subdivision model

The model is defined in Fig. 2.10 and its legend. The CR and PR rates are each half

of the total response rate for all response rates, and the NC and PD rates are each half of

the rate of non-response. The asymptotic relative efficiency for 4 categories relative to 2

categories was calculated.

Figure 2.10. Equal subdivision model. The proportion of non-responders 1 - Φ(E) is

divided equally into the PD and NC categories, and the proportion of responders Φ(E)

is divided equally into PR and CR.  Thus

f1(E)  = Φ(E)/2 + 0.5 and

f3(E)  = Φ(E)/2
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Model 3: Vertical shift model

The model is defined in Fig. 2.11 and its legend. There is a definite threshold in

treatment efficacy before any complete responses are seen, and once this is reached, there

is a rapid rise in the CR rate with the PR rate remaining constant. The relation of the NC

and PD rates is the converse. The asymptotic relative efficiency for a system of 4

categories relative to a system of 2 categories was calculated for the value of p of 0.5.

Figure 2.11. Vertical shift model. The total response curve f2(E) is shifted vertically

upwards by proportion p to give f1(E) and is shifted vertically downwards by proportion

p to give f3(E).  Thus

f1(E)  = Φ(E) + p (subject to a maximum value of 1.0) and

f3(E)  = Φ(E) - p (subject to a minimum of 0).
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CALCULATION OF ASYMPTOTIC RELATIVE EFFICIENCY

Calculations of the relative efficiency for all the models were made using

expression 2.1 which is the power relation for the Mann-Whitney test when applied to

ordered categorical data, and which is derived in Appendix F.
                         k - 1

              4 Σ fr - 1(E) fr (E) (fr - 1(E)  - fr (E)  )  ( zα/2 + zβ )2
r = 1

nk   =     —————————————————————                             (2.1)
                         k - 1

              { Σ ( fr - 1(E)  - fr + 1 (E)  ) f ′r (E)  }2      δ2
r = 1

where

nk is the total number of patients required in a clinical trial of two treatments

δ is the difference in efficacy to be detected

β is 1- the power

α is the two-sided significance level

E and E + δ are the true efficacies of the two treatments

fr (E) is the function representing the boundary between the rth and the (r + 1)th

categories of classification, and

f ′r (E)  is the derivative of fr (E) , i.e. the gradient of the curve when fr (E) is

plotted against E.

For 2 categories (k = 2), there is only one boundary between the categories, which

is the cumulative normal distribution function Φ(E), and expression 2.1 reduces to

                     4 Φ(E)  (1 - Φ(E)  )   ( zα/2 + zβ )2

                n2 =  ——————————————                                     (2.2)
                            φ2 (E)         δ2

φ (E) being the derivative of Φ(E).
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The relative efficiency (denoted ek,2) of the use of k categories of classification relative

to the use of 2 categories is given by n2/nk (as discussed in section 2.4). Thus
                                                         k - 1

φ2 (E) Σ fr - 1(E) fr (E) (fr - 1(E)  – fr (E)  )
r = 1

ek,2  =  —————————————————————————               (2.3)
                                                                                   k - 1

Φ(E)  (1 - Φ(E)  )   { Σ ( fr - 1(E)  – fr + 1 (E)  ) f ′r (E)  }2
r = 1

and this is thus independent of α, β and δ and depends only on the functions representing

the category boundaries.

For model 1, substitution of the values of fr (E) in terms of Φ(E) and φ (E) was used

to calculate the relative efficiency. Expression 2.3 is algebraically complicated but can

be readily calculated by computer using tabulated values of Φ(E) and φ (E) e.g. as given

in Neave (1981). A computer program was written in BASIC to perform this task, and

details of this program together with a sample output from it are given in Appendix G.

For models 2 and 3, the calculation of ek,2 was simplified by first carrying out a

transformation to a linear scale of response, since this converts all the functions fr (E) into

simple linear functions and evaluation of ek,2 reduces to simple algebra. The values of

ek,2 were then calculated using a computer program written in BASIC with calculations

done at 0.1 intervals of treatment efficacy.
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RESULTS

MODEL 1: LATERAL SHIFT MODEL

The relative efficiency for 4 versus 2 categories of classification

The first analysis was described in Fig. 2.9, and the results are shown in Fig. 2.12.

Consider firstly the curve for a response rate θ of 50%. At very small values of w

(corresponding to Fig. 2.9 curves 1a and 3a), the relative efficiency e4,2 is close to 1.00,

i.e. there is little gain in efficiency. This would be expected since the central two

categories contain only a small proportion of the total observations, and the difference

from a 2 category classification is small. At high values of w (corresponding to Fig. 2.9

curves lc and 3c), the gain in efficiency is also small.  Again this is expected, as the

central 2 categories at a response rate of 50% contain almost all of the observations, and

the difference from a 2 category classification is again slight. Between these extremes,

there is a gain in efficiency of analysis, with a maximum relative efficiency of 1.37 for

a response rate of 50%. This occurs at a value of w of 0.9. The same pattern is repeated

at other values of the total response rate θ, except that firstly the relative efficiency is

higher, and secondly the peak relative efficiency occurs at larger values of the category

width w.
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Figure 2.12. The lateral shift model. The relative efficiency for the Mann-Whitney test

of tumour response data is shown for a 4 category system of classification relative to a

2 category system (e4,2).  The value of e4,2 is plotted against the width of each of the

two central categories w. Curves are shown for values of the total response rate θ of 5%,

10%, 20%, 30%, 40% and 50%. The curves for values of θ of over 50% are identical to

those for θ less than 50% with symmetry around θ of 50%, e.g. curves for θ of 60% and

of 40% are identical.

86



The relative efficiency for multiple versus 2 categories of classification

Fig. 2.12 showed the variation of relative efficiency with category width w for 4

categories of classification (i.e. for k equal to 4). Fig. 2.13 replots the greater parts of the

curves of Fig. 2.12 and in addition plots the corresponding curves for larger numbers of

categories i.e. with k equal to 6, 8, 16 and 32.

It can be seen that for θ = 50%, the relative efficiency at low w is slightly higher at

k = 6 than at k = 4, and the peak value of e6,2 of 1.44 (at w = 0.6) is slightly higher than

that of e4,2 (1.37) At high values of w, the curves for k = 4 and k = 6 come together (which

is expected because the additional 2 categories contain very few observations). The

values of e8,2 are again slightly higher than those of e6,2 at low w, but with each further

increase in the number of categories, there is less and less gain in efficiency. The same

pattern is repeated at all values of θ (except that the proportionate increase in efficiency

is greater at the more extreme values of θ e.g. 5% and 95%). The peak value of ek,2

appears to reach a limit as k → ∞ and w → 0 and this limit can be shown to be equal to

3θ(1­θ)/{πφ2(Φ-1(θ))} (see Appendix H). The values plotted adjacent to the y axis in Fig.

2.13 are calculated by this formula.
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Fig. 2.13. The lateral shift model. The relative efficiency for the Mann-Whitney test of

tumour response data for k categories of classification is shown relative to 2 categories

of classification (ek,2).  Values of ek,2 are plotted against the width w of each of the central

categories, for values of k of 4, 6, 8, 16 and 32. The curves for k = 4 are replotted from

Fig. 2.12. Curves are shown for values of the total response rate θ of 5%, 10%, 20%, 30%

and 50% (the curves for θ = 40% are omitted for clarity). The curves for values of θ of

over 50% are identical to those for θ less than 50%, with symmetry around θ of 50%. The

line for k = 2 is at unity, by definition.
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Figure 2.14. The peak relative efficiency for the Mann-Whitney test of a k category

system of classification relative to a 2 category system (ek,2) under the lateral shift model.

For different values of the response rate θ, the highest value of ek,2 (for any width of the

categories w) is plotted against the number of categories k. The value for an infinite

number of categories is calculated from the relation established in Appendix H. The

curves for values of θ of over 50% are identical to those for θ less than 50%, with

symmetry around θ of 50%.

The relationship between peak efficiency and the number of categories is shown more

clearly in Fig. 2.14. From this it can be concluded that there is a limit to the gain in

efficiency when the number of categories is increased from 2 to a large number, and that

there is little (less than 5%) gain in efficiency when the number of categories is increased

beyond 6, for response rates of 50%, or beyond 10, for response rates of 5%. Furthermore,

out of 10 categories at a response rate of 5%, 5 are subdivisions of the 95% of non-
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responders, and 5 are subdivisions of the 5% of responders and so contain very few

observations. Hence, only 5 or 6 categories contain an appreciable proportion of the

observations. Thus it may be concluded, on this model, that classification and analysis

by 6 categories is more efficient than 4 categories but there is little gain beyond 6

categories (if chosen appropriately).

Optimum definitions of 4 categories of response

When a 4 category system of classification is being devised, there may be some

freedom in the definitions of category boundaries. It has been assumed here that the

central boundary is first fixed, i.e. the boundary between response and non-response.

Then there may well be freedom to decide on the exact definitions of the boundary

between PR and CR, and of the boundary between NC and PD. For example, the

minimum duration of CR is usually taken as 4 weeks, but this could be varied.

Consider firstly a total response rate of 50%. The 50% of responders will be

equally divided between CR and PR by a lateral shift w of 0.67, and the 50% of

non-responders will be equally divided between NC and PD by the converse shift w of

-0.67 (these values are obtained as z50% - z25%, and so on).  This value of 0.67 matches

roughly the value of w of 0.9 at which the relative efficiency peaks (see Fig. 2.12). Table

2.13 shows that this relationship is a general one for other values of the response rate θ

of 50% or more, i.e. the value of w that results in division of the total response rate

equally into CR and PR is close to the value of w at which the relative efficiency peaks.

There is symmetry around θ of 50%, so that for θ less than 50%, the value of w that

results in equal division of the non-response rate into PD and NC is close to that at which

the relative efficiency peaks.
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Table 2.13. Comparison of the lateral shift model that results in equal division of the

total response rate, and the model at which the relative efficiency peaks.

MODEL 2: EQUAL SUBDIVISION MODEL

In this model (defined in Fig. 2.10), the proportion of non-responders is (at all

response rates) divided equally into the PD and NC categories, and the proportion of

responders is (at all response rates) divided equally into the PR and CR categories. By

some simple algebra, expression 2.3 reduces to 4θ(1-θ)/(1+θ-θ2), and this is plotted in

Fig. 2.15 as curve 1.

It can be seen that the value of e4,2 for the equal subdivision model is less than 1.0

for all values of response, with a maximum of 0.8 and minimum of zero. There is thus

a disadvantage to the use of 4 categories relative to the use of 2 categories of

classification at all response rates.

Total response
rate

w that divides response
equally into CR and PR

w of peak relative
efficiency

50% 0.67 0.9

60% 0.78 1.0

70% 0.91 1.1

80% 1.09 1.3

90% 1.41 1.6

95% 1.71 1.8
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MODEL 3: VERTICAL SHIFT MODEL

This model was defined in Fig. 2.11. For p = 0.5, expression 2.3 reduces to

9θ/(1+2θ) for θ ≤ 50%, and to 9(1-θ)/(3-2θ) for θ ≥ 50%. This is plotted in Fig. 2.15 curve

2. For response rates θ of 15% to 85%, the relative efficiency e4,2 is greater than 1 with

a peak of 2.25, and classification by 4 categories is more efficient than classification by

2. Outside these limits, e4,2 is less than 1, which is consistent with this model resembling

the equal subdivision model in these regions, as can be appreciated from Figs. 2.11 and

2.10.

Figure 2.15. The equal subdivision and vertical shift models. The relative efficiency for

the Mann-Whitney test of tumour response data for a 4 category system of classification

relative to a 2 category system (e4,2) is plotted against response rate θ for the equal

subdivision model (curve 1) and the vertical shift model (curve 2).
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DISCUSSION

Before the power of a statistical test of tumour response can be calculated, some

assumptions must be made about the effect on rates of CR, PR, NC, and PD of a change

in treatment efficacy, i.e. it is necessary to formulate a model of treatment effect. Any

conclusions are then applicable only to the model assumed. However, the conclusions

from a model may be generally applicable if the model approximates to the real situation.

In this section, three types of model have been considered. The lateral shift model

seems to be the most plausible since it implies that an increase in the response rate due

to an improvement in treatment efficacy is accompanied by an increase in the proportion

of responses which are complete responses, and also a decrease in the proportion of

nonresponses which are progressive disease. The equal subdivision model seems to be

less plausible since it has no similar implication. The vertical shift model seems to be the

least plausible, but has been included here in order to widen the range of models

considered. The following section explores which model best fits real tumour response

data, and in fact finds the lateral shift model to be the best fit.

The lateral shift model shows an advantage for 4 categories of classification for all

values of the response rate 8 and for all values of the category width w (since the relative

efficiency e4,2 is in all cases greater than 1.0). Response rates θ outside of the range of

10% to 90% are rare in clinical practice. The following section will consider which

values of w are the most likely to occur in practice; but on theoretical grounds, values of

w less than 0.5 or greater than 1.5 are unlikely to occur in an internationally adopted 4

category assessment system since such values would lead to only small proportions of

observations in one or more categories and a recognition that the category is redundant.

For values of θ of 10% to 90% and values of w of 0.5 to 1.5, e4,2 lies in the range 1.3 to

2.0 (as can be seen in Fig. 2.12). Thus on the lateral shift model, there is an appreciable
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gain in efficiency of between 30% and 100% in a 4 category relative to a 2 category

system of classification.

The practical importance of such a gain in efficiency will be discussed in section

2.10, but briefly, it implies a considerable saving in the numbers of patients to be entered

in a clinical trial.

The data presented in Figs. 2.13 and 2.14 on classification using 6 or more

categories of classification show a further theoretical gain in efficiency when the number

of categories of classification is increased from 4 to 6, and little further gain thereafter.

These conclusions are in broad agreement with those of Husler and Riedwyl (1989).

They approached the general problem of grouping of data for analysis from the opposite

direction in calculating the efficiency of the Mann-Whitney test for grouped data relative

to ungrouped data. They considered a range of probability distributions, including the

normal distribution considered here, using a lateral shift model. They found for the

various distributions that a grouping of the data into 8 to 14 groups is for large samples

as efficient as the ungrouped rank test, and furthermore that such grouping is more

efficient than the ungrouped rank test if the underlying density distribution has large tails.

On the whole the work of Husler and Riedwyl is not directly comparable with this work

as a different grouping of data is assumed, so that all of the groups contain equal numbers

of observations. For two categories, this translates into consideration only of response

rates of 50% in terms of the present work. Where the two sets of work are most

comparable, which is in the lowest curve of Fig. 2.14, there is close numerical agreement.

These theoretical considerations must be combined with the practicalities of

response assessment. Moertel and Handley (1976) showed that there is considerable
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variability between observers using the standard 4 categories of response (section 2.1),

and it is clear that as the number of classification categories increases, the observer

variability will increase. The theoretical gain of efficiency of 5% to 18% (depending on

the response rate) in increasing the number of categories from 4 to 6 may well therefore

not be seen in practice. The calculations using the equal subdivision model indicate that

subdivision of a category by the addition of a new category boundary will actually

decrease the efficiency of analysis if it provides no information on treatment efficacy. An

alteration of the standard 4 category classification system to include additional categories

such as "minimal response" may thus possibly lead to a loss rather than a gain in

efficiency and cannot be generally recommended from this model. An exception to this

might be at very high or at very low response rates when there are only two or three

categories that contain appreciable proportions of the observations. Subdivision of the

largest category may then be worthwhile.

The findings concerning the optimal definition of 4 categories of response are not

surprising. It might be expected a priori that the statistical efficiency is highest when the

categories are of roughly equal size and this was found in the modelling. This conclusion

is in broad agreement with the work of Connor (1972) who investigated the optimum

grouping of data for a number of continuous distributions, when performing a test for

trend.
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CONCLUSIONS

The work of this section can be summarized as follows. From consideration of

models of tumour response:

� Response data should be analyzed using the standard 4 categories of response

rather than only the dichotomy of total response versus non-response.

� There is little advantage in the use of more than 4 categories of response.

� If possible, the categories should be defined such that there are roughly equal

numbers in each.

� Subdivision of the standard 4 categories of response e.g. use of a category of

"minimal response" is unlikely to increase and may actually reduce the

efficiency of statistical analysis.
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2.7 A SURVEY OF THE DISTRIBUTION OF TUMOUR RESPONSE DATA IN

PUBLISHED CLINICAL TRIALS AND COMPARISON WITH MODELS OF

TREATMENT EFFECT

INTRODUCTION

In the preceding section, a number of models of tumour response data were

considered in order to calculate the relative efficiency of 4 or more categories of

classification relative to 2 categories of classification (with analysis done by a Mann

Whitney test). Each model related total response rate, complete response rate, and

progressive disease rate. In general, this relative efficiency was greater than 1.0, i.e.

there was an advantage to the use of 4 or more categories, but the conclusions depended

on the model assumed. The current section addresses the question of which model

provides the best fit to real clinical data.

METHODS

The clinical data studied were the 71 sets of tumour response data discussed in

section 2.5, and further details are given there. The interrelation of rates of CR, PR, NC,

and PD are shown in two plots which are really two variations of the same method. The

example set of data already used extensively will be used to demonstrate the two

techniques. It is repeated in Table 2.14 together with the rates expressed as percentages.

In both techniques, rates of complete response (CR) and rates of freedom from

progressive disease (CR + PR + NC) are plotted against the total response rate in the

same format as Fig. 2.6 of the preceding section, i.e. using a non-linear scale for the

total response rate on the x axis, such that the plot of the total response rate is the

sigmoid shape of the cumulative normal distribution curve. In statistical terminology,
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this is done by a probit transformation of the total response rate. The first technique is

demonstrated in Fig. 2.16.

Table 2.14. Example tumour response data (from Iversen et al, 1990).

O = orchidectomy; G + F = goserulin and flutamide.

When the results from several trials are plotted on the same graph by the first

technique, the information of which groups of points arise from the same clinical trial is

lost and this is why the second technique is also used. This retains this information but

shows less clearly the positions of the points. It is illustrated in Fig. 2.17 for the same set

of data. The data for a two arm trial are represented by a line joining the CR rates for the

two treatments, and by a second line joining the proportions free of progressive disease.

These lines are the experimental counterparts of the population curves f3 (E) and f1 (E) of

Category Counts Individual rates Cumulative rates

O G+F O G+F O G+F

CR 0 1 0% 1% 0% 1%

PR 62 69 48% 58% 48% 59%

NC 26 28 21% 23% 69% 82%

PD 40 21 31% 18% 100% 100%

CR + PR 62 70 48% 59%

Total 128 119
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Fig. 2.7 of section 2.6. When the number of arms of the trial a was greater than 2, the data

are similarly represented, but by a - 1 lines joining points ordered according to the total

response rates of each of the treatment arms.

Figure 2.16. First technique of displaying the interrelation of rates of CR, PR, NC and PD

from published clinical trials. The rates of complete response (CR), and freedom from

progressive disease (CR + PR + NC) for the trial of O versus G + F (Table 2.14) are

plotted by the square boxes against the total response rate on a probit scale on the x axis.

Some or all of the data from 5 of the 71 sets of data were excluded because of

observed total response rates of either 0% or 100% which cannot properly be represented

on a probit scale such as in Fig. 2.16. These observed total response rates of 0% and 100%

do not necessarily imply that the format of Fig. 2.16 is too restrictive in disallowing total

response rates of 0% and 100%, since in all 5 cases, the group sizes were small (ranging
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from 8 to 45), the 95% confidence intervals of the total response rate were therefore wide,

and the true total response rates could well have been other than 0% or 100%.

Figure 2.17. The second technique of displaying the interrelation of rates of CR, PR, NC

and PD from published clinical trials using the same sample data as Fig. 2.16. The rates

of complete response (CR) and freedom from progressive disease (CR + PR + NC) are

plotted against the total response rate on the x axis on a probit scale.

The group sizes ranged from 6 to 296 with a median of 61. This median value

implies 95% confidence intervals in all the rates of around ± 13%. There is thus some

uncertainty in both the x and the y coordinates of the points plotted by the first technique

and similarly of the ends of the lines drawn by the second.
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RESULTS AND DISCUSSION

Fig. 2.18 plots the relation between complete response, freedom from progressive

disease and the total response rates for the 71 sets of tumour response data by the first

technique. There is considerable vertical scatter of the points representing complete

response, and also of the points representing freedom from progressive disease. There

are several potential reasons for the scatter. Firstly, there is necessarily some sampling

variability due to the relatively small sample sizes. This will give variability in both the

x and the y coordinates (and this variability will be linked). The 95% confidence intervals

will be around ± 10% to 20%, which is sufficient to explain some but not all of the scatter

on the diagram. The other sources of scatter are the differences between the trials in

tumour type, classification system, stage of disease, treatment type, amount of

pretreatment, and so on.

Fig. 2.19 displays the same data as Fig. 2.18 by the second technique (which was

illustrated in Fig. 2.17). Despite the scatter of the points, something can be learned from

these plots. They can be compared with the three models of tumour response represented

in Figs 2.8, 2.10 and 2.11 of section 2.6. By eye, the data fit the lateral shift model of

Fig. 2.8 better than either of the other two models, and this is particularly so of the

complete response rates. It is interesting that the lateral shift model is the model for

which the Mann-Whitney test is optimally efficient. A fit by eye of the lateral shift model

using shifts of +1.1 and -l.l is shown in Fig. 2.20. Taking these shifts together with the

relation shown in Fig. 2.12 gives an estimate of the value in practice of the relative

efficiency e4,2 for 4 categories relative to 2 categories of classification. This estimated

value ranges from 1.3 at a total response rate of 50% to 2.1 at a total response rate of 10%

or 90%.
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This range of values includes the value of 1.4 estimated for the same relative

efficiency by the re-analysis of the data sets in section 2.5. The practical implication of

these values of the relative efficiency are discussed in section 2.10.

Figure 2.18.  Data on the relation between the complete response, freedom from

progressive disease and total response rates in 71 clinical trials. Complete response rates

are plotted against total response rates in the right lower part of the figure. Freedom from

progressive disease (equalling the sum of the CR + PR + NC rates) are similarly plotted

in the left upper part of the diagram.
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Figure 2.19. Data on the relation between the complete response, freedom from

progressive disease and total response rates in 71 clinical trials. The data points from

within each trial are plotted by a series of lines. Complete response rates are plotted

against total response rates in the right lower part of the figure. Freedom from

progressive disease (equalling the sum of the CR + PR + NC rates) are similarly plotted

in the left upper part of the diagram.
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Figure 2.20.  Fit by eye of the lateral shift model to the data of Fig. 2.19. Shifts are of

+ 1.1 for the PD/NC boundary and -1.1 for the PR/CR boundary.
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2.8 A SURVEY OF METHODS OF ESTIMATION OF TUMOUR RESPONSE IN

CANCER CLINICAL TRIALS

INTRODUCTION AND METHODS

There are increasing calls for clinical research to estimate the sizes of differences

between treatments and not merely test whether or not a difference exists (as discussed

in section 1.2). This survey aimed to assess the extent to which methods of estimation of

differences in outcome were used in recent cancer clinical trials comparing tumour

response. The series of 81 clinical trials discussed in section 2.2 was surveyed and the

use of methods of estimation and calculation of confidence intervals were recorded.

Further details of the trials are given in section 2.2.

RESULTS AND DISCUSSION

Table 2.15 shows the methods used to summarize the results and estimate the

difference in outcome. Most of the papers calculated response rates as a percentage,

although there were variations in whether this was done for each individual treatment,

for the overall combined results, or for both. Few papers (7) calculated the arithmetic

difference between the response rates although this is such a simple calculation that in

many papers it was done implicitly rather than explicitly. Only two papers used a more

elaborate technique of estimation. The following section will review a number of

methods of estimation that can be applied to tumour response data, and will discuss

possible reasons why they are not being used in publications.
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Table 2.15. Summary estimates calculated in the 81 publications

Method of estimation Number of papers

Total response rates or complete response rates 77

Overall, combining treatments 5

For each treatment 61

Both overall and for each treatment 11

Difference in total response rate 7

Difference in complete response rates 0

Other 2

Difference in response rate adjusted for prognostic
factors by logistic regression

1

Odds ratio for response 1
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Table 2.16 details the use of confidence intervals in the 81 papers. Only 27 papers

reported confidence intervals at all and in only 7 was there calculation of a confidence

interval of a difference between treatments. This lack of use of confidence intervals may

reflect either a lack of awareness of the techniques, or limited usefulness, and this will

be discussed in chapter 4.

Table 2.16. Calculation of confidence intervals in the 81 publications

Method Number of papers

No confidence interval calculated 54

Confidence interval calculated 27

of overall response rate 3

of individual response rate 20

of difference in response rate 6

of difference in response rate adjusted for
prognostic factors by logistic regression

1

Confidence interval used

95% 26

90% 1
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2.9 A REVIEW OF METHODS OF ESTIMATION OF TUMOUR RESPONSE IN

CANCER TRIALS

There are increasing calls for statistical tests of significance of clinical trial data

to be supplemented by estimates of the magnitude of the differences found. This is

because the degree of statistical significance is a poor indicator of the degree of clinical

significance of the trial result, since the former depends also on the trial size - a clinically

insignificant difference of a few percent in success rates may be highly significant

statistically if the trial is very large, and similarly, a large difference in success rates may

be non-significant statistically if the trial is very small. The principle methods of

estimation that can be applied to tumour response data are reviewed in this section. These

are:

� The arithmetic difference in the response rate

� The relative risk of response

� The odds ratio

� The Mann-Whitney estimator

� The rank sum estimator

The preceding section showed these techniques to be little used in recent cancer

clinical trials. In addition to calculation of the best estimate of the difference in two

treatments, methods are available for the calculation of confidence intervals to indicate

the precision of the calculated estimates. Again, these techniques appear from the

preceding section to be little used in recent cancer clinical trials. The data of Table 2.6

will again be used to demonstrate the methods and it is repeated (with the columns

reversed for convenience) as Table 2.17.
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Table 2.17. Example tumour response data (Iversen et al, 1990). Numbers of patients in

each response category for each treatment.

THE DIFFERENCE IN PROPORTIONS

This is the simplest technique and was found to be the one most commonly used

(even though infrequently) in the survey of the preceding section. The success rate (in

this context, the total response rate or the complete response rate) is calculated for each

treatment and the arithmetic difference is obtained by subtraction. For the data of Table

2.17, the difference in the total response rate is 58.8% - 48.4%, i.e. 10%.

Category of response Goserelin and

flutamide (G + F)

Orchidectomy

(O)

Total

Complete response (CR) 1 0 1

Partial response (PR) 69 62 131

No change (NC) 28 26 54

Progressive disease (PD) 21 40 61

Total response (CR+PR) 70 (58.8%) 62 (48.4%)

Non-response (NC+PD) 49 (41.2%) 66 (51.6%)

Total 119 128 247
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The 95% confidence interval for the difference in the response rates can be

obtained from the difference ± 1.96 × the standard error (Altman, 1991), using the

formula for the standard error (SE) of the difference in two proportions p1 and p2

(Altman, 1991):

SE(p1 - p2) = √{p1(1 - p1)/n1 + p2(1 - p2)/n2 }

where

n1 is the total number of observations in group 1, and

n2 is the total number of observations in group 2.

In the current example,

SE(p1 - p2) = √{0.588(1 - 0.588)/119 +  0.484(1- 0.484)/128}

 = 6.32%

and the 95% confidence interval for the difference in proportions is calculated as

p1 - p2 - 1.96 × SE(p1 - p2) to p1 - p2 + 1.96 × SE(p1 - p2)

which in this example equals -2.0% to +22.8%

By the simple interpretation of confidence intervals, the trial can be said to have found

a range of values in which the true difference between G + F and orchidectomy

probably lies, i.e. from G + F being 2% worse, to orchidectomy being 23% better.

Calculation of the confidence interval for the difference in the total response rate

was the principle method of confidence interval estimation found in the survey reported

in the preceding section.
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THE RELATIVE RISK

This method was developed in epidemiology but can be applied to other areas. The

rate of occurrence of a particular outcome is calculated for each group, and the ratio is

taken. For tumour response data, the outcomes of greatest interest are usually the total

response rate and the complete response rate. For the data of Table 2.17, the relative risk

of a response (complete or partial) is

58.8%
——— =  1.21
48.4%

A method for the calculation of a confidence interval is available (Altman, 1991). This

method of estimation was not found to be in current use in cancer clinical trials in the

survey of section 2.8, and it is hard to see any merit in it.

THE ODDS RATIO

This method is similar to the calculation of the relative risk, but the odds of

occurrence of a particular outcome are calculated for each group and the ratio is taken;

if the outcome occurs in a proportion p, then the odds are

p / (1 - p).

Again, odds ratios could be applied either to the total response rate or the complete

response rate. For the data of Table 2.17, the odds ratio for a response is

58.8% / 41.2%
—————— =  1.52
48.4% / 51.6%

Again, a method is available for the calculation of a confidence interval (Altman, 1991).

The calculation of odds ratios occurred in only one instance in the 81 articles

surveyed in the preceding section. However, there is arguably more to recommend it than
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the calculation of relative risks. As an example, the odds ratios for the following

improvements in the response rate in a clinical trial are all approximately equal to 2.0.

5% to 10%,

10% to 18%,

41% to 59%,

82% to 90%, and

90% to 95%

Although the odds ratios for these improvements in response are all equal, the

arithmetical differences in response rates are not, ranging from 5% to 18%. Many

oncologists would recognise an approximate equivalence between the improvements

listed above, or at least would be familiar with the concept that it is easier by

developments in treatment to increase a response rate of 50% to one of 60% than it is to

increase a response rate of 90% to one of 100%. Thus it may be that the odds ratio is a

better index of differences in treatment efficacy than the arithmetical difference in

response rates.

An extension of this is in multiple logistic regression, which can correct for the

influence of prognostic factors such as stage, histological grade and performance status.

The model underlying logistic regression assumes an equivalence of odds ratios e.g. it

assumes equivalence of the differences in success rates such as given in the list above,

and this does not seem unreasonable. (In fact, a logistic transformation is very closely

similar (Armitage & Berry, 1987) to the probit transformation that was found in section

2.7 to be a reasonable fit in conjunction with a lateral shift model to real tumour response

data. There are thus strong parallels between the lateral shift model explored in this

dissertation and the model that underlies logistic regression.) Thus an advantage of the

use of odds ratios is that correction can be made for imbalances in prognostic factors

between the treatment groups.
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THE MANN-WHITNEY ESTIMATOR

As well as being used for a statistical test, the Mann-Whitney test procedure can

give an estimate of the difference between two groups. The calculated value of UAB is

the number of pairs of observations, one of group A and one of group B, where the group

A observation is less than the group B observation. Since the total number of these pairs

of observations is n1n2, the value of UAB / (n1n2) gives the proportion of pairs of

observations in which the group A observation was less than the group B observation.

This can be used as a prediction of the probability of a new group A observation being

less than a new group B observation (Armitage & Berry, 1987; Altman, 1991).

Procedures are available for calculating a confidence interval for this probability,

although computers are needed for their evaluation (Morton & Dobson, 1990).

As an example, the value of U from the data of Table 2.17 is 8725, giving a value

of U / n1n2 of

8725 / (128 × 119) = 0.57.

Thus if two new patients are treated, one by orchidectomy and the other by G + F, there

is an estimated 57% probability that the patient treated by G + F will have a better

response, and an estimated 43% probability that the patient treated by G + F will have a

worse response (these probabilities are distinct from the probability that an individual

patient will have a better response from G + F than from orchidectomy).

These probabilities with their confidence intervals are a way of viewing the relative

efficacy of two treatments. They may be a better reflection of the relative efficacy of two

treatments than a comparison of the response rates since they make use of all the

response data rather than the arbitrary cutoff of whether or not there is at least a partial

response. This is particularly so when nearly all the patients respond (and the difference

between the treatments is shown mainly in the proportion of complete responses) and
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also when almost none of the patients respond (and the chief difference between the

treatments is in the relative frequencies of no change and progressive disease).

It is possible to extend the concept of relative efficiency from hypothesis testing to

methods of estimation, in that a more efficient method of estimation will give a relatively

narrower confidence interval than a less efficient method of estimation (Pratt and

Gibbons, 1981). In fact, the relative efficiency of two methods of estimation is equal to

the relative efficiency of the two equivalent statistical tests (Pratt and Gibbons, 1981).

This means that the conclusions in the previous sections concerning the superiority of the

Mann-Whitney test over the Chi squared test of 2 categories of response also imply an

advantage for the Mann-Whitney estimator over the comparison of two proportions

either by the arithmetic difference or by odds ratios.

THE RANK SUM ESTIMATOR

The rank sum estimator (δ) has been described by Morton and Dobson (1990). It is

closely related to the Mann-Whitney estimator, and is not really a different estimator - it

just presents the same information in a different form. In the context of the above

example, the rank sum estimator gives an estimate of the difference between the

probability that a patient given G + F will have a better response, and the probability that

a patient having an orchidectomy will have a better response, i.e. of 5'7% - 43% = 14%.

This estimator seems to have less clinical relevance than the Mann-Whitney estimator for

tumour response data (or similarly for morbidity data recorded by categories).
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DISCUSSION

This section has reviewed the principle methods for estimating the size of

difference in tumour response between the treatments in a clinical trial. Some advantages

have been discussed for the more complex methods of estimation using odds ratios and

the Mann-Whitney estimator. However, it must be remembered that the aim of methods

of estimation is to inform oncologists as to the size of difference in outcome that may be

expected in their patients. Most practising oncologists are not familiar with the more

complex concepts, and are unlikely ever to become familiar with them, given the many

demands on their time. Thus it seems that the outcome of a clinical trial is best presented

in terms of the differences in total and complete response rates (or possibly in terms of

the proportions free of progression depending on the clinical situation). The more

complex methods could be used more to correct the response rates either for prognostic

factors (e.g. by logistic regression methods), or by incorporation of information from CR

and PD rates using a lateral shift model as discussed in this dissertation.
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2.10 GENERAL DISCUSSION

The survey described in section 2.2 showed that the most commonly used statistical

test in the analysis of tumour response data is the Chi squared test of the total response

rate. However, the theoretical arguments detailed in section 2.3 support the Mann

Whitney test as probably the best test for the analysis of tumour response data in clinical

trials. Furthermore, section 2.5 found an advantage in practice for the Mann-Whitney test

with an increase in the efficiency of analysis by a factor of around 1.4; and the modelling

of section 2.6 combined with the study of distribution of response data of section 2.7

supported this with an estimate of between 1.3 and 2.1 (depending on the rate of

response) for the efficiency of the Mann-Whitney test relative to the Chi squared test of

the total response rate.

What is the practical relevance of this relative efficiency of 1.4?  For two equivalent

tests, the relative efficiency is 1.00. A relative efficiency greater than 1.00 can be looked

at in two ways. Firstly (by definition), it implies that more patients are required by the

less efficient statistical test to give a conclusion with the same level of certainty (the

same statistical power). In the case under discussion, the implication is that a Chi squared

test of the total response rate requires around 40% more patients in a clinical trial than a

Mann-Whitney analysis for the same power. Putting it another way, a switch from a Chi

squared analysis of total response to a Mann-Whitney test is equivalent to increasing

recruitment to the trial by around 40%. Use of a less efficient test is equivalent to

discarding the results from a proportion of the patients prior to the analysis.

A second way of viewing the same situation is that the use of the more efficient test

will give a more extreme z-value (and more extreme P value) if there is a true underlying

difference in treatment effect, and it will thus show stronger evidence against the

hypothesis of no treatment difference. For a relative efficiency of around 1.4, if the P
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value from analysis of a set of data by the less efficient test was 10%, it will be expected

to fall to 5% on analysis by the more efficient test. A P value of 5% will be expected to

fall to 2%, and a P value of 1% will be expected to fall to 0.3% on changing from the

less to the more efficient test. This follows from the relation between z-values and

relative efficiency that is discussed in Appendix D.

Since section 2.2 found that currently the most common test used in the analysis of

tumour response data is the Chi squared test of the total response rate, it follows that

results significant at the 5% level are currently probably being missed and going

unreported. This was confirmed in section 2.5 where 5 of the 27 results significant by a

Mann-Whitney test were not reported as significant in the original publication, and a

further 3 were reported in an equivocal way. It is clearly wrong to overemphasize the 5%

cutoff, but these figures are an illustration that extend to other significance levels; all

levels of conclusion will tend to be strengthened by the use of the more efficient test.

The results in this chapter provide very strong support for the routine use of the

Mann-Whitney test in the analysis of tumour response data. It would be wrong to

perform a number of statistical tests, for example including the Chi squared and the

Mann-Whitney tests, and select the test to be reported on the basis of minimizing the P

value since such multiple testing can be misleading. Where a general advantage has been

shown for a statistical test in a particular area of research (such as here for the Mann-

Whitney test in tumour response data), its use should be routine.

The surveys in this chapter have also shown that the current analysis of tumour

response data emphasizes statistical testing of hypotheses as opposed to methods of

estimation and calculation of confidence intervals. The possible reasons for this are

discussed in Chapter 5.
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CHAPTER 3. TREATMENT MORBIDITY

3.1 INTRODUCTION

Ideally, cancer treatments would cause no appreciable morbidity, but in practice

the treatments often exploit only small differences between malignant cells and normal

cells, and toxic effects are common. Many cancer treatments, especially radical

treatments given with the aim of cure, are given at their maximum tolerated doses; and

there are only a few exceptions: for example, seminoma and lymphoma can usually be

controlled by relatively low doses of radiotherapy, and choriocarcinoma can usually be

cured by relatively low doses of chemotherapy. In the development of new drugs, the

phase II clinical trials are aimed at identifying the maximum tolerated dose of a new drug

or regime.

The recent UK trials of neutron irradiation may be cited as an example of the

importance of the study of morbidity. In the Hammersmith trial of low energy neutron

against photon radiotherapy, the initial enthusiasm over higher local control rates was

later tempered by an appreciation of higher morbidity in the neutron treated patients

(Duncan, 1983). However, higher morbidity was not found at the doses studied in the

Clatterbridge trial of high energy neutrons in advanced pelvic malignancies (Errington

et al, 1991). The study of morbidity is thus essential in the context of cancer clinical trials.

Despite this, many radiotherapy trials have not included a proper assessment of

morbidity (Dische et al, 1989).
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SCALES OF MEASUREMENT OF MORBIDITY

There are many parallels between morbidity data and tumour response data. Just

like tumour response, the morbidity of treatment is in general difficult to measure

exactly. Most types of morbidity are qualitative although a few are quantitative e.g.

depression of white cell and platelet counts, or of renal function, or elevation of liver

enzyme levels. However, even for the few quantitative types of morbidity, the accuracy

of measurement is not great - white cell and platelet counts may be measured only two

or three times weekly and the true nadir may occur between measurement days; and

estimation of renal function is well known to be unreliable. Because of these

inaccuracies, and for ease of presentation of results, all types of morbidity including

quantitative variables are usually recorded by allocation to one of five broad categories.

Standard scales for morbidity have been devised, for example those of the WHO

(Miller et al, 1981), the Eastern Cooperative Group of the USA (Monfardini et al, 1987),

the EORTC/RTOG (Radiation Therapy Oncology Group), and a working group

sponsored by the Medical Research Council (Dische et al, 1989).

Morbidity is frequently divided into early and late according to how soon it

develops after treatment. Separate scales for early and late toxicity have been developed

in the EORTC/RTOG system.

TREATMENT MORBIDITY: TYPE OF VARIABLE

For acute morbidity, it is usual to record the most severe grade of morbidity

experienced by each patient and to compare treatments in terms of these most severe

grades. The treatment morbidity data is thus in the form of counts of patients in each of

the categories. Like tumour response categories, treatment morbidity categories form a
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natural order from the best to the worst, and thus the data again form an ordered

categorical variable.

This conventional analysis takes no account of the duration of morbidity. When

the treatments are similar in type, this may not matter, but where they are dissimilar, a

more complex method of recording may be needed. For example, in the current

Continuous Hyperfractionated Accelerated Radiotherapy (CHART) trials, where

radiation treatments with overall times of 12 days and 6 weeks are being compared, a

comparison of the peak morbidity experienced will not be adequate, as the durations are

likely to be very different.

When the onset of morbidity is delayed, e.g. in the fibrosis that may follow

radiotherapy, there is a further complication in that the length of follow-up will be

different for different patients, and the calculation of incidence rates becomes more

complex.

THE VALUE OF MEASUREMENT OF TREATMENT MORBIDITY

Before going on to explore the statistical techniques available for the assessment

of treatment morbidity in the following sections, it is worthwhile considering exactly

why assessment of morbidity is important, and this really comes down to what clinical

questions are to be answered by the collection of the morbidity data.

In many cancer clinical trials, the clinical question is whether the morbidity of

the treatments compared are equal. For many chemotherapy and radiotherapy regimes,

the response rates, the cure rates and the morbidity rates all tend to increase as the dose

of treatment increases. An improvement in response rate, local control rate or even cure

rate may not in fact benefit the patient if it is at the expense of a large increase in
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morbidity. Before one treatment can be considered superior to another, it is necessary to

demonstrate a higher efficacy for the same morbidity, or equivalently less morbidity at

the same efficacy. For example, in the second BIR laryngo-pharynx trial, where no

difference in efficacy was found between short and long radiotherapy fractionation

regimes (Wiernik et al, 1991), an important question was whether the morbidity (acute

and late) was equal in the two treatment groups.

Other clinical trials may investigate the management of morbidity, for example, the

optimum control of vomiting in patients receiving chemotherapy. Here, the principle

clinical question is again whether there is a difference in morbidity in the groups studied.

The size of any difference found is a secondary question, but this will be particularly

important if there is a large difference in the cost or morbidity of the treatments studied.

In some clinical trials, it is already well known that two treatments have different

patterns of morbidity, and when the treatments are compared in a trial, the main

questions are about response and survival; for example, it is usually not useful to

compare the effects on the bone marrow in a trial of radiotherapy versus chemotherapy

as it is so well known that the effects are different. A second situation where morbidity

data do not require a test of statistical significance is in a dose ranging study; the

intention is to find the maximum tolerated dose, and it is known in advance that the

morbidity levels at different doses will be different. A third situation is where morbidity

levels are very small and occurring only at placebo rates. In statistical terms, the

problems here are of estimation rather than hypothesis testing.

121



3.2 THE STATISTICAL TESTS AVAILABLE FOR ACUTE TREATMENT

MORBIDITY DATA

Treatment morbidity data can be divided into acute morbidity data (usually

categorical but sometimes continuous) and late morbidity data. The simple statistical

methods available for continuous data such as weight loss are the t test and the Mann

Whitney test; this does not seem to be a contentious issue, and will not be discussed

further. Data on delayed morbidity closely resemble survival data, from the point of

view of statistical analysis; similar methods of analysis are appropriate, and these will

not be considered further. The rest of this chapter will concentrate on acute morbidity

recorded by categories.

There are close similarities between acute morbidity data and tumour response

data in that both form ordered categories. The statistical tests that can be applied to

acute treatment morbidity are thus the same as the tests for tumour response data that

were discussed in section 2.3. These are:

� The Chi squared test of all categories of morbidity,

� The Chi squared test of a dichotomy,

� Fisher's exact test,

� The Chi squared test for trend,

� The t test after allocation of scores,

� The Mann-Whitney and Kruskal-Wallis tests,

� Regression methods.

The discussion of section 2.3 on the relative merits of these tests will not be repeated,

but the conclusion are similar, i.e. that in many cases, the Mann-Whitney test makes

more use of the information contained in the data and should be a more efficient test,

without the need for a scoring system of the Chi squared test for trend and the t test.
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The difficulties with Fisher's test or the Chi squared test of a dichotomy may be

greater than for tumour response data, since the choice of dichotomy may be more

difficult. It is possible to divide the grades of morbidity into a dichotomy in a number of

ways: no morbidity versus any, the most severe grade of morbidity versus all lesser

grades, or by a grouping of several lesser grades of morbidity versus a grouping of the

remaining more severe grades (e.g. grades 0 - 2 versus grades 3 - 5). Theoretical work

(Connor, 1972) supports use of a dichotomy that divides the total number of patients into

two roughly equal groups. The exceptions to these general arguments are where the

relation between the dose of treatment and the clinical significance of the morbidity is

not a simple one. As detailed in Chapter 1, there may be a threshold effect, e.g. in

myelosuppression, minor levels of morbidity may have very little clinical significance

whereas severe levels may cause septicaemia or haemorrhage, which may be fatal. Here,

it will be important to assess the important dichotomy of whether or not the clinically

significant event (e.g. neutropenic fever) has occurred and the Chi squared test (or

Fisher's test) is the appropriate technique. The selection of a statistical method depends

on identifying the clinical question to be answered in the clinical trial - whether interest

centres on minimizing all grades of the morbidity (as in nausea and vomiting), or on

minimizing the frequency of the most severe grade(s). Even in this second case, it may

be that a Mann-Whitney test of all categories of morbidity is helpful; for example, it may

be that the frequency of neutropenic fever is low, and the power of the trial to detect a

difference in myelosuppression is consequently low; but by including all grades of

myelosuppression in the comparison, a better indication of the relative degrees of

myelosuppression may be obtained, although this depends on the relationship between

the frequencies of different grades of myelosuppression, and this remains to be

investigated.
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3.3 A SURVEY OF METHODS OF ANALYSIS OF ACUTE MORBIDITY DATA

IN PUBLISHED CANCER CLINICAL TRIALS

INTRODUCTION AND METHODS

Section 2.2 found that tumour response data is currently most commonly analyzed

by the Chi squared test, although sections 2.6 and 2.5 found the Mann-Whitney test to

be superior both in theory and in practice. Since acute morbidity data are usually

recorded in ordered categories, like response data, the statistical problem is generally the

same. Thus a Mann-Whitney test making more use of of the information in the data may

be more efficient than a Chi squared test. This section reports a survey of the statistical

tests used for acute treatment morbidity.

In contrast to response data, morbidity data often do not require a statistical test of

a null hypothesis, as discussed in section 3.1. A study such as this one of how morbidity

data are being analyzed (and the study in the next section of how they should be

analyzed) must therefore be selective and concentrate on the morbidity data in the

literature where a statistical test is most appropriate. This judgement of the relevance of

a statistical test is clearly a subjective one, and consequently two clearcut criteria were

employed in this survey to define a set of papers where statistical analysis of morbidity

was most appropriate; firstly where the authors themselves carried out a statistical

analysis, and secondly where they reported the data in detail by categorising it by grade

and treatment.

Papers were studied from the same seven journals as provided the tumour response

data for chapter 2. Papers were studied using the same criteria of randomised studies of

solid tumours, and were included if firstly the morbidity data was subjected to a

statistical test by the authors themselves, or secondly if the morbidity data was presented
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as a contingency table (or the equivalent in text) categorised by grade of morbidity and

by treatment. Dose ranging studies aimed at finding the acute normal tissue tolerance

were excluded. Data were collected by an adaptation of the form used for the response

data survey of section 2.2.

A total of 36 papers were identified, published between January and December

1990 inclusive. Most of the papers also qualified for inclusion in the series of papers of

the response survey of section 2.2, and so the characteristics of the papers in the two

series are broadly the same.

In 8 of the 36 papers, the clinical trial concerned the control of morbidity of

treatment e.g. control of vomiting. In 4 of these papers, in addition to the main morbidity

data, (e.g. vomiting) there were data on the side-effects of the treatment aimed at

minimizing that morbidity (e.g. side-effects of the anti-emetic drugs). In these cases the

two types of morbidity were analyzed separately as if they had been reported in separate

papers. This gave a total of 40 sets of morbidity data for analysis. Table 3.1 shows the

distribution of the 36 papers by tumour type.
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Table 3.1. Distribution of tumour types

RESULTS AND DISCUSSION

Table 3.2 shows the statistical tests reported. The data were mostly reported by

categories rather than as continuous data. Several of the papers reported more than one

test and so the total number of tests shown in Table 3.2 exceeds the number of sets of

morbidity data. The findings are broadly similar to those of the survey of statistical tests

reported for tumour response data of section 2.2. There was again a wide variety of tests

in use, and the commonest test was a Chi squared test of a dichotomy. The Mann-

Whitney test was used in two sets of categorical data.

Tumour type Number of papers

Breast Carcinoma 7

Head & Neck Carcinoma 6

Bronchial Carcinoma,  Non-Small Cell type 4

Bronchial Carcinoma, Small Cell type 2

Colorectal Carcinoma 3

Multiple types 8

Other 6

Total 36
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Table 3.2. The types of statistical test reported for the 40 sets of morbidity data. Several

papers reported more than one test.

In a total of 14 papers, the analysis was of a dichotomy. In 4 of these 14 papers, the

method of presentation of the morbidity data was as either present or absent. In the

remaining 10, the morbidity data were detailed by treatment and by grade, but for

Statistical test Number of sets of data

Categorical data 22

Chi squared test 14

of a dichotomy 10

of the full table 0

unclear / varied 4

Fisher's exact test of a dichotomy 3

Multivariate analysis of a dichotomy 3

Mann-Whitney test 2

Continuous data 6

t test 3

Mann-Whitney test 2

Logrank test of time to development 1

Test unclear 8

No test reported 10
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analysis, the grades were combined to a dichotomy. The distribution of these 10

dichotomies was: none versus any in 3, lesser grades versus more severe grades in 4,

unclear in 1, and varied in 2.
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3.4 STATISTICAL ANALYSIS OF ACUTE TREATMENT MORBIDITY DATA:

COMPARISON OF THE CHI-SQUARED TEST WITH THE MANN-WHITNEY TEST

INTRODUCTION AND METHODS

The survey reported in the preceding section showed the Chi squared test of a

dichotomy to be the statistical test most commonly used in the analysis of acute treatment

morbidity data, and there was little use of the Mann-Whitney test which makes more use

of the information in the data. This section explores how much difference the choice of

statistical test makes in practice, by analysis of a number of sets of real morbidity data

by several statistical techniques. It uses the same methods to compare statistical tests as

were used in section 2.5 describing re-analysis of 74 sets of real tumour response data.

The statistical techniques compared were the same as for the tumour response data

of section 2.5, namely the Chi squared test of a dichotomy, the Chi squared test of all

categories of morbidity, and the Mann-Whitney test of all categories. In the preceding

section, no consistent policy was found over the choice of a dichotomy, with some

analyses being carried out of the least severe grade of morbidity observed versus more

severe grades, and some analyses combining lesser grades and testing the combination

against more severe grades (e.g. grades 0 - 2 versus grades 3 - 5). Usually these latter

combinations seemed to divide all the observations into roughly equal groups, but this

was never explicitly stated as the rationale. Formation of a dichotomy so as to divide the

total observations equally into two groups has theoretical justification (Connor, 1972). A

third possible technique (not encountered in the preceding section) is to test the most

severe grade of morbidity experienced against any lesser grade. In this section, all of

these three variants of the Chi squared test were included.
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Thus, all of the sets of data were each analyzed by the following 5 methods (all

two-sided):

A. a Chi squared test of the dichotomy of the least severe grade of morbidity versus more

severe grades,

B. a Chi squared test of the dichotomy which divided the total observations most nearly

equally into two halves,

C. a Chi squared test of the dichotomy of the most severe grade of morbidity versus

lesser grades,

D. a Chi squared test of all grades of morbidity subject to the rules avoiding small

category sizes described in section 2.3, and

E. a Mann-Whitney test of all grades of morbidity.

In the cases of techniques A and C, Fisher's exact test was substituted where

necessary because of small numbers, and categories were combined where necessary to

give a total of at least 6 patients in the smaller category (since with less than 6 patients,

Fisher's test cannot normally give a P value less than 5%).  For technique E, the

Kruskal-Wallis test was substituted where more than two treatments were compared. The

methods were compared on an intention-to-analyze basis. For 51 cases of technique A,

30 cases of technique C, and 30 cases of technique D, the Chi squared test reduced to the

same test as technique B, by forced combination of categories to avoid small numbers

per category.

Where the outcomes of the treatments in a clinical trial are very different, it can be

argued that no statistical test is necessary. It therefore seemed inappropriate to include in

this re-analysis sets of morbidity data where a difference in outcome was obvious. To

define such sets of data, a cutoff of a z-value of 4.0 (P = 0.006%) was arbitrarily chosen

as the upper limit for inclusion. As in section 2.5, the study size was planned to be such

as to give at least 20 sets of data significant at 5%, and with z-values less than 4.0, i.e.

with z-values between 1.96 and 4.0. The minimum of 20 significant sets of data was
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chosen (as in section 2.5) in order to give a reasonably narrow 95% confidence interval

of the square of the median z-value ratio (see Appendix D). Papers were studied in

3-month batches of the same 7 journals as used previously and morbidity data were

recorded until this target was achieved. Data were not recorded for re-analysis if the total

number of complications (of any grade) was less than 6 for two treatment groups, or less

than 8 for 3 treatment groups. This gave the same set of 36 papers as were studied in the

preceding section.

In 15 papers, the data were presented only as dichotomies which were thus

unsuitable for re-analysis. The remaining 21 papers contained data on a total of 92 types

of morbidity (up to 9 types per paper), presented as a table by grade and treatment (or the

equivalent in text). In 4 of these 92 data sets, there were three or more treatments, and

there were so few patients in the categories outside of one large category that a Chi

squared test was not appropriate, and these 4 data sets were excluded. A further 8 sets of

data were excluded because the numbers of patients outside one large category were too

small to allow a Chi squared test by standard criteria (Armitage & Berry, 1987); a

Mann-Whitney test may also be inappropriate in this situation. Of the remaining 80 sets

of data, there were 17 types of morbidity where the z-values were greater than 4.0 by at

least two of the techniques detailed above, and the remaining 63 sets of data were

subjected to detailed analysis. The types of morbidity in these 63 sets of data are shown

in Table 3.3. The numbers of patients included in the 63 data sets ranged from 35 to 2740

with a median of 251.
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Table 3.3. Types of morbidity in the 63 sets of data used for re-analysis.

RESULTS AND DISCUSSION

NUMBERS OF SIGNIFICANT RESULTS

The numbers of results significant at 5% and at 1% by the five statistical methods

are shown in Table 3.4. By chance, 3 or 4 results significant at 5% would be expected

(i.e. 5% of 63). These results are similar to those for the tumour response data of section

2.5, i.e. the Mann-Whitney test again gave the highest numbers of significant results.

This supports the Mann-Whitney test as being the most efficient test, in line with the

Type of morbidity Number of sets of data

Nausea / Vomiting 13

Leucocyte nadir 6

Platelet nadir 3

Other haematological 4

Diarrhoea 4

Neurotoxicity 4

Renal 3

Other 26

Total 63
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expectation from theory. Relatively little difference was found between the three variants

of the Chi squared test of a dichotomy (techniques A, B and C). This is not surprising

because in 51 of the 63 data sets, technique A became identical to technique B by the

amalgamation of categories forced by small numbers, and in 30 of the data sets,

technique C similarly became identical to technique B. For subsequent comparisons in

this section between the Chi squared test of a dichotomy and techniques D and E, it was

necessary to select one of the techniques A, B and C. Since little difference was found

using the data studied between techniques A, B and C, the version chosen was technique

B, as this has theoretical justification (Connor, 1972).

Table 3.4. Numbers of the 63 data sets with significant results by the 5 statistical

techniques.

Technique Number at 5% Number at 1%

A. Chi squared test - no versus any morbidity 22 14

B. Chi squared test - even dichotomy 26 13

C. Chi squared test - severe versus less morbidity 27 15

D. Chi squared test - all grades of morbidity 28 15

E. Mann-Whitney test of all grades 28 18
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RELATIONSHIP BETWEEN z-VALUES

Figure 3.1 displays the z-values for the 63 sets of data analyzed by the Mann-

Whitney test and the Chi squared test of the dichotomy most equally dividing the patients.

There is a general tendency for the points to lie above the line of equality. Of the 29 sets

of data significant at 5% by either test, 7 lie below and 22 lie above the line of equality

(P = 0.5% by the sign test). There is thus good evidence that the Mann-Whitney test is

the more efficient.

Figure 3.1. Comparison of the z-values (and the corresponding P values) for 63 sets of

acute treatment morbidity data analyzed by both the Mann-Whitney test and the Chi

squared test of the dichotomy most equally dividing the patients.
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ESTIMATION OF RELATIVE EFFICIENCY

By the method of Appendix D, using the 29 sets of data significant by either test,

the overall relative efficiency of the Mann-Whitney test relative to the Chi squared test

of the dichotomy most equally dividing the patients is estimated as 1.18 (95% confidence

interval 1.09 to 1.51). This overall estimate of the relative efficiency may be an

underestimate, as in many sets of data, the results presented and available for this

reanalysis had categories partially combined, e.g. results were presented for the 3

combined categories of 0 - 1, 2 - 3 and 4. By excluding such sets of data, which were

presented using less than the number of categories in the standard morbidity scoring

systems, a revised estimate of the relative efficiency of 1.31 is obtained.

For those morbidity data sets which were the primary end-point of the trial, e.g.

where control of morbidity was the subject of study of the trial, the relative efficiency for

the Mann-Whitney test relative to the Chi squared test of a dichotomy was estimated as

1.67 (from 7 significant data sets). These sets of data were more likely to have a wide

distribution of patients across the morbidity categories, whereas when morbidity was a

secondary endpoint, the data were more often largely limited to one or two grades of

morbidity.

The best overall estimate for the advantage of the Mann-Whitney test in the

analysis of acute morbidity of treatment over the Chi squared test of a dichotomy is thus

around 1.3, or possibly more where morbidity is the primary end-point of the trial. This

means that the majority of investigators, currently using the Chi squared test, can

effectively increase the recruitment to their clinical trials by around 30% or more by

simply switching their method of analysis to a Mann-Whitney test.
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The distribution of the z-values indicated the efficiency of the Chi squared test of

all grades of morbidity to be intermediate between the Chi squared test of a dichotomy

and the Mann-Whitney test. This finding is consistent with expectation from theory and

with the similar findings for the tumour response data of section 2.5.
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3.5 STATISTICAL TESTING OF ACUTE MORBIDITY DATA:

CONSIDERATIONS FROM MATHEMATICAL MODELLING

Sections 2.5 and 2.6 explored what can be learned from the construction of models

concerning statistical analysis of tumour response data from clinical trials. Since there

are strong parallels between tumour response data and acute morbidity data, the

conclusions from sections 2.5 and 2.6 can be tentatively extended to acute morbidity data.

A priori, a lateral shift model again seems the most reasonable model for the effect

of an increase in treatment efficacy on the distribution of patients in the various

categories, i.e. grades of morbidity. This model would imply a similar effect of treatment

at all grades of morbidity, which would follow if the pathogenesis at each of the grades

of morbidity was similar in type, but differing in degree - which is usually the case. On

this basis, the implications are qualitatively the same as for tumour response data, i.e. that

analysis using several categories of classification is more efficient than the analysis of a

dichotomy (but there is little gain in efficiency when the number of categories increases

beyond 6). These considerations would again support the analysis of acute morbidity

data by a Mann-Whitney test using all the categories of the standard assessment systems.
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3.6 METHODS OF ESTIMATION OF ACUTE MORBIDITY DATA: A SURVEY

AND DISCUSSION

INTRODUCTION

The statistical techniques available for hypothesis testing and for estimation of

differences in tumour response were discussed in Chapter 2. The survey of section 2.8

confirmed that it is common practice for tumour response data to be summarised in

publications by the total response rates or the complete response rates (or both), and that

differences between treatments are summarised most commonly by the arithmetical

differences in the total response rates. Confidence intervals were calculated only rarely.

The preceding sections of this chapter have discussed methods of hypothesis testing in

treatment morbidity. For completeness, this section considers methods of estimation of

the difference in morbidity in a clinical trial of two treatments, although the clinical

relevance of such methods is unclear.

A SURVEY

A survey was made of all trials reporting treatment morbidity in 1990 in the 7

journals used previously. The 55 papers found were largely the same as those of the

previous two sections. For each paper, the most complex method used to summarize the

morbidity data was recorded (there were often several types of morbidity presented and

for obvious reasons, some types were presented in more detail than others). The use of

confidence intervals was also recorded. Of the 55 papers, 51 reported categorical data

only, 2 reported continuous data only, and 2 reported both. The 4 papers reporting

continuous data all used means or medians as summary measures - this will not be

discussed further. Of the 53 papers reporting categorical data, 23 summarized the data

by calculating the percentage of patients experiencing each grade of morbidity for each
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treatment. None of the papers explicitly calculated the arithmetic difference in the

proportion of patients experiencing morbidity, but this was sometimes done implicitly.

There was no use of more complex methods of estimation such as calculation of odds

ratios.

A total of three confidence intervals were calculated (in two of the 55 papers).

One was of a difference in a continuous measure (difference in a visual analogue score

between treatments), and two were of data reduced to dichotomies. One of these was

calculated incorrectly, and in the other, the percentage of the confidence interval was not

stated.

DISCUSSION

In section 2.9, there was a discussion of the methods of estimation of the

difference between treatments that can be applied to tumour response data. These same

methods (difference in proportions, odds ratios, etc) can be applied to acute morbidity

data, but again, it is not clear that they will assist oncologists in the interpretation of the

data. On theoretical grounds, the best method of estimation may be by the Mann-

Whitney estimator, with the advantages of making use of all the grades of morbidity, and

of avoiding the need to select a dichotomy. For treatment morbidity data, there is no

summary measure that parallels the total response rate for tumour response data, and how

such data are best presented is not clear. It may be that the best simple summary measure

is in terms of the dichotomy that most equally divides the total observations into two

groups.
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CHAPTER 4. GENERAL DISCUSSION

Four surveys have been presented in this dissertation - on statistical tests and

methods of estimation for both tumour response and acute treatment morbidity data - and

all have shown a wide gap between recommendations in the literature and the procedures

in practice.

Considering firstly the recommendations on statistical testing, considerable

evidence has been presented in favour of the recommendations that appear in several

sources for use of more complex methods than the simple Chi squared test in analyzing

ordered categorical data, such as tumour response and treatment morbidity. For the slight

increase in complexity of the Mann-Whitney test, the gains in practice are not

insignificant - a switch in the method of analysis from the Chi squared test to a

Mann-Whitney test is equivalent to increasing recruitment to the clinical trial by around

40% for tumour response data and by around 30% or more for treatment morbidity data.

The improved efficiency of analysis of the Mann-Whitney test has a number of

practical consequences. If the number of patients entered in a clinical trial is unchanged,

the improved efficiency means that small differences in outcome between the treatment

groups are more readily detected (the trial is more likely to find a difference significant

at 5%), and also large differences in outcome will be detected more conclusively (the P

value from the trial is more likely to be small enough for the result to be regarded as

conclusive). Alternatively, the improved efficiency of the Mann-Whitney test could be

exploited by reducing the numbers of patients entered, so that trials could be completed
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in a shorter time and at less cost than previously. A further consequence is that it may be

possible to carry out some studies which otherwise would not be commenced through

lack of numbers of patients.

Why the Mann-Whitney test is not being used in the analysis of tumour response

and treatment morbidity data is not clear. It may be that there is a need for better

education and wider dissemination of the recommendations for the use of the Mann

Whitney test, such as those of Moses et al (1984). Secondly, there may be a need for

better communication between clinicians and statisticians as to the nature of tumour

response and treatment morbidity data. The third and perhaps the most likely reason is

that there may be a general reluctance to use a more complex statistical test unless it has

been shown to be a definite improvement on the simpler alternative. Such a reluctance is

reasonable, especially as it has been shown in this dissertation in the modelling of section

2.6 that the Mann-Whitney test is not more efficient than a Chi squared test for all

conceivable models of treatment effect - the Mann-Whitney test was actually less

efficient than a Chi squared test on the assumption of the equal subdivision model (this

model was in fact subsequently shown in section 2.7 to be a poor fit to clinical data).

Thus it appears to be necessary to test general recommendations (such as for the use of

the Mann-Whitney test) in each field of scientific research. The techniques used in this

dissertation for the comparison of statistical tests deserve wider application.

It is less clear that a change is needed in current practice in methods of estimation

and calculation of confidence intervals. The calculation of simple response rates and

morbidity rates as percentages provides the information that oncologists require in their

clinical practice - a change to more elaborate methods such as use of odds ratios appears

hard to justify, in view of the difficulties in understanding what they mean.
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USE OF CONFIDENCE INTERVALS IN CANCER CLINICAL TRIALS

The use of confidence intervals in cancer clinical trials will be discussed in more

detail because of the current clamour for them (Gardner and Altman, 1988; Anonymous,

1987). When a study is aimed at estimating a single value e.g. the response rate to a

particular drug, it is important to have a measure of the reliability of the estimate, and the

calculation of 95% confidence intervals achieves this purpose. The use of standard errors

and of error bars on charts has been long established in scientific work for a similar end.

The extension of use of confidence intervals to comparative clinical trials is less

clear. Here, it is not a single estimate that is important, but the difference in outcome

between 2 or more treatments. To concentrate on the P value from a clinical trial to the

exclusion of the size of the difference found is wrong. There are also certain kinds of

cancer clinical trial where a test of a null hypothesis is not appropriate, such as dose

ranging studies (which may be randomised) where the intention is to find the maximum

tolerated dose; a test of whether different doses result in differences in response or

morbidity is inappropriate - it is known that there are differences and the clinical question

concerns how large the differences are. Here there is a need for the calculation of

confidence intervals.

There are, however, problems with extending the calculation of confidence

intervals to cancer clinical trials in general. In many trials, the outcome in any patient

depends on many prognostic factors, e.g. the response to chemotherapy in metastatic

breast cancer depends on performance status, number of disease sites, and so on

(Henderson et al, 1989). These prognostic factors may in fact be more important than the

choice of treatment given in determining the response rate. Here, the difference in

outcome e.g. the arithmetic difference between response rates between the treatments is

likely to depend heavily on the prognostic factors. There is thus not one single difference
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to be estimated. In contrast, whether or not a difference exists (and in which direction)

may well be constant across all prognostic factors, and there is no corresponding problem

with hypothesis testing. This problem for estimation where prognostic factors are

important may be overcome by the use of more complex models, but what they estimate

may not be meaningful to clinicians.

A further difficulty is that many trials compare more than two treatments. Here, it

is possible to perform a statistical test of the hypothesis of no difference between any of

the treatments, whereas confidence intervals of the difference between treatments can

only be done between pairs of treatments. Furthermore, when a new treatment is being

developed, it may not matter if the difference from existing treatments is only small,

since it may well be possible to modify the new treatment to optimise it and enlarge on

that difference; the important question may be whether any difference in efficacy exists.

The development of radiation sensitizers is an example where the difference in outcome

over conventional treatment is small, but sufficient to encourage further research.

There are also problems over the interpretation of confidence intervals. The more

correct interpretation is of less use in clinical practice, and the simpler (incorrect)

interpretation, that the 95% confidence interval is a range of values that includes the true

value with a probability of 95%, is the one that most clinicians will adopt. However, the

actual frequency depends on what kinds of true difference are likely to occur, and this

has been little studied.
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THE IMPORTANCE OF STATISTICS IN MEDICINE

It is well established that clinicians' understanding of statistics could be improved

(Altman & Bland, 1991). For some clinicians, statistical methods are a routine to be

performed at the end of a clinical study. The work of this dissertation may help to

establish that statistical issues should be considered throughout the planning and

performance of clinical trials, and not just in the final analysis - in particular, data should

be recorded in sufficient detail to enable an efficient analysis to be performed.

The conclusions of this dissertation on the greater efficiency of the Mann-Whitney

test compared to the Chi squared test in ordered categories may well also apply to other

measurement scales in medicine. In particular, in Oncology, quality of life is often

recorded as ordered categorical data, and it may well be that the Mann-Whitney test

should be used in this area as well.

STATISTICAL DEVELOPMENTS

There are some disadvantages to the Mann-Whitney test.  It is less widely known

and less available on computer statistical software. Routines for use of the Mann-

Whitney test on ordered categorical data should be added to computer software packages.

However, the Mann-Whitney test can be done on ordered categorical data using a hand

calculator in only a few minutes more than a Chi squared test; and these disadvantages

of the Mann-Whitney test are minor compared with the effective increase in recruitment

to clinical trials of 30% to 40%.

Although the Mann-Whitney test has been established as an appropriate statistical

test for ordered categorical data for large sample sizes, the limitations of the test where

there are both small numbers of categories and small samples has not been explored. As
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an example, consider the data of Table 4.1, which is from one of the 81 papers surveyed

in section 2.2. Standard criteria (Altman, 1991) prevent the application of the Chi

squared test to such data either to the whole table or after collapsing to a dichotomy,

because the numbers outside of the CR category are too small. It seems likely that the

Mann-Whitney test is also not appropriate. This difficulty with the Mann-Whitney test

does not weaken the conclusions of this dissertation since of the 27 significant sets of

response data used in section 2.5, only one (which is shown in Table 4.1) was of this

form, and exclusion of this data set results in only a slight change in the estimated

relative efficiency; this problem was minimized in section 3.4 re-analyzing morbidity

data by excluding all data sets where the Chi squared test is not valid by standard criteria.

Further work on the small sample limitations of the Mann-Whitney test is required.

Table 4.1. Tumour response data from Cimino et al (1989) comparing a chemotherapy

regime with a radiotherapy technique in the treatment of Hodgkin's disease.

Category of response Chemotherapy Radiotherapy

Complete response 40 45

Partial response 0 0

No change 1 0

Progressive disease 3 0
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CHAPTER 5. CONCLUSIONS

This dissertation has studied a number of aspects of the design and analysis of

cancer clinical trials. It is well established (Altman & Bland, 1991) that statistical errors

are common in medical research in general. This dissertation has quantified the extent of

misapplication of statistical methods in Oncology, in particular in the analysis of tumour

response and acute treatment morbidity. It may be expected on theoretical grounds that

the Mann-Whitney test is more efficient than the Chi squared test in the analysis of

tumour response and treatment morbidity. This dissertation has both confirmed and

quantified this increased efficiency over a considerable number of published data sets -

derived from 81 trials that included analysis of tumour response, and from 36 trials that

included analysis of acute treatment morbidity.

The dissertation also includes a new method for comparing the performance of

statistical tests in practice - by estimating the relative efficiency from the median value

of the square of the z-values. In contrast to theoretical derivation of relative efficiency,

this new method can be used when the model of treatment effect (i.e. the alternative

hypothesis) is unclear, which is the case in very many situations. This new method was

used in the dissertation to quantify the advantage of the Mann-Whitney test over the Chi

squared test in the types of clinical data considered, and this quantification of the

advantage of the Mann-Whitney test may help to encourage its wider use.

It may be possible to refine this new method for estimating the relative efficiency

of two statistical tests. The method uses the median value of the square of the ratio of the
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z-values of the significant data sets. It does not take account of the number of

observations made (e.g. the number of patients in the trial) or the size of the departure

from the null hypothesis (e.g. the size of the difference in response or morbidity). It may

be that a refinement leading to a better estimator of relative efficiency would be to

include a weighting for the number of observations, or the size of difference, or the size

of the z-values themselves (which are a reflection of the first two factors).

The dissertation also investigated the relationship between the four categories of

tumour response - which has not previously been studied - and this relationship was

found to fit best to a lateral shift model.

The weaknesses of the dissertation are that some parts of it, working in new areas,

are rather preliminary. The comparison of statistical tests of tumour response included

all types of solid tumour, and further work may be worthwhile, looking at individual

tumour types or particular clinical situations to see whether the general conclusions of

this dissertation regarding tumour response apply in all situations. Similarly, the

comparison of statistical tests of acute treatment morbidity in this dissertation covers a

range of types of morbidity, a range of treatment comparisons and also several different

reasons for measuring morbidity. Again, further work may clarify whether there are any

exceptions to the general conclusions of the dissertation. However, these weaknesses

should not delay adoption of the Mann-Whitney test as the standard method of analysis

for tumour response and acute treatment morbidity since the practical evidence collected

in this dissertation is backed by theoretical arguments. If the clinical situation does have

any bearing, it is likely to be merely on the size of the advantage of the Mann-Whitney

test. In support of this view, it can be seen from the figures of sections 2.5 and 3.4 that

the advantage of the Mann-Whitney test was consistent across almost all of the data sets

examined (in that almost all the points lie above the line of equality). The exceptional

data sets may well have arisen through random effects.
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A number of recommendations can be made on the basis of the work of this

dissertation.

DESIGN OF CANCER CLINICAL TRIALS

� Tumour response data should be recorded using the 4 standard categories of

assessment

� The category of "minimal response" should not be added to the standard 4 category

classification system without good justification, as it may actually decrease the

efficiency of analysis.

� Acute treatment morbidity data should be recorded using the standard 5 or 6

categories of classification.

� When measurement scales are being developed for comparison of treatments, the

aim should be for 4 to 6 categories of measurement to each contain appreciable

numbers of observations..

ANALYSIS OF CANCER CLINICAL TRIAL DATA

� Tumour response data should be analyzed by the Mann-Whitney test.

� Certain acute treatment morbidity data should be analyzed by the Mann-Whitney

test.

� Further research is required on more elaborate methods of analysis using regression

methods and ordered categorical regression models, to assess whether these can

further improve the efficiency of analysis.

� Questions over the optimal choice of statistical methods could and should be

answered more often by empirical comparison of the methods in practice using real

sets of data.

� The facility to perform the Mann-Whitney test on ordered categorical data should

be added to those statistical software systems where it is currently lacking.
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APPENDICES

APPENDIX A: DETAILS OF WORK DONE

This work was carried out during the post of Senior Registrar in Clinical Oncology

at Mersey Regional Centre for Radiotherapy and Oncology, Clatterbridge Hospital,

Merseyside, and the post of Research Fellow attached to the J. K. Douglas Laboratories,

Clatterbridge Hospital.

It is entirely my own work. Dr M.K.B. Parmar of the MRC Clinical Trials Office,

Cambridge, acted as supervisor, and assisted through discussion of the general direction of

the work and discussion of the results obtained.

Publications relating to the dissertation are:

CAMPBELL, I. R., 1992. Confidence intervals. The Royal Statistical Society News and

Notes, 18.7, 3.

CAMPBELL, I. R., & PARMAR, M. K. B. Estimation of the relative efficiency of two

statistical tests from the ratio of the z-values from typical data sets. Submitted 1992.
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APPENDIX B: LIST OF SYMBOLS USED.

The following mathematical symbols are used in the text

P The probability of the observed results occurring (or more extreme results)

assuming the null hypothesis of no difference between treatments. In some

journals, the symbol p is preferred. The P value may be expressed as a

percentage (e.g. 4.2%) or equivalently as a decimal (e.g. 0.042). The former is

used in this dissertation for ease of comparison of different P values.

χ2 Chi squared

eA,B Relative efficiency. If statistical test A requires nA observations to detect a

difference δ at a significance level α with power 1-β, and test B requires nB

observations to do the same, then the relative efficiency of test A relative to

test B eA,B is given by the ratio nB /nA .

E The efficacy of a treatment.

φ(x) The normal distribution probability density function. The formula for the

inverted U-shaped graph of the standard normal distribution shown in Fig. B.1

is
       -x2/2e———

    √(2π)

The symbol usually used to represent this is φ(x) and this is termed the

probability density function of the normal distribution.
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Fig. B.1. The standard normal distribution

Φ(x) The cumulative normal distribution function, i.e. the area under the standard

normal distribution curve up to the value x (as demonstrated in Fig. B.1).  The

formula is
         –x2/2x e

——— dx∫               -∞    √(2π)

z-value The standard normal deviate from a statistical test (the deviation of the test

statistic from its null hypothesis value divided by the standard error). For

example, a z-value of 1.960 is just significant at 5%.

zx The 100(1-x) percentile of the standard normal distribution, e.g. z0.025 = 1.96.

Thus

Φ(zx) = 1 - x

k The number of categories of a classification system.

θ The total response rate

159



σ Standard deviation

k
  Σ An instruction to add all the values of the expression to the right of the
 r = 1

symbol by systematically changing the index r from a starting point of 1 to

finish at k.

n1  The number of patients or observations in group 1.

n2  The number of patients or observations in group 2.

n The total number of patients or observations = n1 + n2.
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APPENDIX C: THE FORM USED FOR THE RECORDING OF THE STATISTICAL

ANALYSIS OF TUMOUR RESPONSE DATA IN PUBLISHED ARTICLES

FORM FOR SURVEY OF METHODS OF ANALYSIS OF RESPONSE DATA v1.7

Number in series _____ Paper photocopied and labelled "RA " Y N

First author _______ Year ___ Journal _________ Vol ___ P ___

Tumour _____

Response system used Standard Specially constructed Unstated

Type of comparison C/T vs C/T C/T vs H H vs H S abl vs H/C/T Other

Number of arms  __ Treatments

Number of categories  __

Divisions used  PD/NC  Y N

    MR/PR Y N

    PR/CR Y N

Numbers per category:    arm1  arm2 arm3 arm4 arm5 Meaning of category

worst   cat1    .     .    .    .    .    .

first   cat2    .     .    .    .    .    .

    cat3    .     .    .    .    .    .

    cat4    .     .    .    .    .    .

Analysis in paper:

Method None χ2 MW Multivariate analysis of response Unclear

Was the contingency table collapsed Y N Unclear

lf Y, to how many categories  ___

Derived statistic reported Y N  value  ___

 value reported Y N  value  ____

One-sided Two-sided Unstated

One-tailed Two-tailed Unstated

Was response a major end-point of the study (included in abstract) Y N

Conclusion  “

Re-analysis:

χ2 test of response

Appropriate Y N     Result  ___  df__  Equiv z ___   ___

χ2 test of full table or table after partially collapsing because of numbers

Appropriate Y N  No of cats. ___        Result  ___  df__  Equiv  ___  ___

Nonparametric test

Mann-Whitney Result  ______  ____   ___

Kruskal-Wallis  Result  _____  df ___ Equiv  ___  ___

Comments
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APPENDIX D: ESTIMATION OF THE RELATIVE EFFICIENCY OF TWO

STATISTICAL TESTS FROM THE RATIO OF THE z-VALUES FROM

TYPICAL DATA SETS

SUMMARY

The standard method for deriving the relative efficiency of two statistical tests is

through the power functions of the two tests. These functions, and therefore the derived

relative efficiency, depend critically on the assumed alternative hypothesis. This

appendix presents a new method of estimating relative efficiency which avoids the need

to assume a particular alternative hypothesis. It uses a number of data sets typical of a

field of scientific research. Each data set is analyzed by each of the two statistical tests,

and z-values are derived from the test statistics. The relative efficiency of the two tests

is then estimated by the median value (over the data sets that are statistically significant)

of the square of the ratio of the z-values. This estimate of the relative efficiency may be

used to indicate which of the statistical tests is the more efficient (and by how much) in

the analysis of other data sets in the same field of scientific research.

INTRODUCTION

The estimation of relative efficiency is important in the selection of a statistical test

for data analysis. Selection of the most efficient test will minimize the sample size

required in a study, or (equivalently) will maximize the power of a study for a particular

sample size.

The efficiency of a statistical test A relative to a second test B can be defined as

follows. If test A requires nA observations to detect a difference δ at a significance level
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α with power 1-β and test B requires nB observations to do the same, then the relative

efficiency of test A relative to test B eA,B is given by the ratio nB/nA. In general the relative

efficiency of two tests will depend principally on the type of difference to be detected i.e.

the alternative hypothesis; its dependence on the values of α, β and δ is relatively small.

A detailed discussion is available in Pratt and Gibbons (1981).

The principle method of estimation of relative efficiency utilises the power

functions of the two tests to derive the asymptotic relative efficiency. These power

functions depend on the assumptions made about the distribution of the data under the

alternative hypothesis. There is thus an uncertainty in the calculated relative efficiency if

the distribution of the data under the alternative hypothesis in a particular area of research

is unclear.

This appendix describes a technique which avoids the need to assume a distribution

for the data, or equivalently the types of alternative which arise, since it uses real sets of

data typical of a particular field of scientific research. The theory of the technique is first

described for a single alternative hypothesis, making use of a simulation example. This

is followed by extension to a series of similar data sets involving a range of alternative

hypotheses.
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THE METHOD FOR A SINGLE ALTERNATIVE HYPOTHESIS

The general formula (Lachin, 1981) relating the sample size and power for a

two-sided statistical test is

           (σ0 zα / 2  +  σ zβ)2

n   =   ——————
δ2

where n is the number of observations, σ/√n is the standard deviation of the test statistic,

σ0/√n is the standard deviation of the test statistic on the assumption of the null hypothe-

sis, zx is the 100(1-x) percentile of the standard normal distribution, α is the level of

statistical significance, β is the type II error (i.e. 1 - power), and δ is the true population

difference from the null hypothesis. Both σ and σ0 are related to (or identical to) the

standard deviation of the individual measurements, and so are independent of n.  It is

often reasonable to assume that σ and σ0.  Then

σ2 (zα / 2  + zβ)2

n   =   ——————                                                 (D.1)
δ2

This relation can be grasped from consideration of Fig. D.1. Curve 1 represents the

distribution of the z-values from the test statistic on the basis of the null hypothesis. This

is by definition a Normal distribution with mean 0, and variance 1. The shaded area

labelled α/2 represents the (upper-tailed) proportion significant at the α-level if the null

hypothesis is true. Curve 2 represents the distribution of the z-values (denoted by the

variable Z) from the test statistic assuming that there is some deviation from the null

hypothesis. This is usually taken to be a Normal distribution with the same variance 1,

and mean denoted by z̄ .  The shaded area β represents the proportion of these z-values

that do not reach the critical value zα/2, i.e. the type II error. It can be seen from Fig. D.1

that

z̄    = zα/2 + zβ
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Fig. D.1. Demonstration of the general power formula.

Thus
σ2 z̄ 2

   n   =   ———
δ2

For simplicity, consider first one-sample statistical tests, and consider two

statistical tests A and B being applied to samples from a population where the null

hypothesis is known to be false and the alternative hypothesis is fixed. For statistical test

A, applied to a sample of size nA, using subscript A to denote the values of σ2 and δ,

σA2 z̄A2

   nA   =   ————                                                  (D.2)
δA2

For test B, applied to a sample of size n B,  the value of σ is different from σA and is

denoted by σB.  The difference between the alternative hypothesis and the null hypothesis

δB is equivalent to the difference δA but may not be identical to δA because each of the

statistical tests may express the alternative hypothesis in a different way. Thus

σB2 z̄B2

   nB   =   ————                                                  (D.3)
δB2
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Re-arranging equations (D.2) and (D.3) we obtain
z̄A2 nA    δA2 σB2

——    =    —————
z̄B2 nB    δB2 σA2

For a given alternative hypothesis, δA2 σB2 / (δB2 σA2) is a fixed constant, K say, which is

independent of sample sizes.  Thus

z̄A2 nA
——    =   — K                                                          (D. 4)
z̄B2 nB

We can allow the ratio of nA to nB to vary until z̄ A  = z̄ B.  Then the powers of the two

statistical tests at the same significance level are equal (since z̄    = zα/2 + zβ).  In these

circumstances the ratio nB / nA is defined as the relative efficiency of test A relative to test

B (eA,B) and thus from (D.4),

K  = eA,B

Thus, for a given alternative hypothesis,

z̄A2 nA
——    =   — eA,B
z̄B2 nB

If the two statistical tests are applied to samples of the same size, so that nA = nB ,

z̄A2

——    = eA,B                                                             (D.5)
z̄B2

It is this result that forms the basis of the technique described in this appendix.

For statistical tests which are two-sample rather than one-sample tests, the theory

and the result are the same except that firstly δ represents the difference between the two

populations, and secondly an additional variable to be considered is the relative size of

the samples from the two populations, and it will be convenient to keep these always in

the same proportion.
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SIMULATION EXAMPLE FOR A SINGLE ALTERNATIVE HYPOTHESIS: THE

EFFICIENCY OF THE WILCOXON ONE-SAMPLE TEST RELATIVE TO THE

SIGN TEST FOR NORMALLY DISTRIBUTED DATA

Using the Wichmann and Hill (1982) pseudorandom number algorithm, one

thousand samples of size 100 were randomly taken from a Normal distribution with mean

0.385, and variance 1. Interest lies in testing whether the mean of the sample is different

from zero. The value of 0.385 was chosen so that 65% of the population distribution is

positive, and 35% is negative, in order that the expected z-value under the sign test , z̄ s is

(65 - 50) / √(100 × ½ × ½)  =  3.00. Each sample was analyzed both by the Wilcoxon

one-sample test and by the sign test (subscripts W and S respectively are used to identify

the test statistics) giving two z-values for each sample. The sign test included the standard

correction for continuity (Altman, 1991).

The distribution of the z-values by the sign test, z̄ S in the simulation is shown by

the bar chart of Fig. D.2 (the distribution is discrete because, in the sign test, only integer

counts of positive values can occur).  The mean of the observed z-values z̄OS  =  2.956

agrees well with the expected value of 3. The standard deviation of 0.930 is less than

unity, and a consideration of the function of the sign test gives two reasons. Firstly the

standard deviation of a proportion of 0.65 differs from that for a proportion of 0.5 (by a

factor of 0.95), and secondly the binomial distribution differs slightly from the Normal.
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Fig. D.2. The bar chart shows the distribution of the z-values by the sign test in 1000

simulated samples of size 100 taken from a Normal distribution (0.385, 1). The

histogram shows the distribution of the z-values by the Wilcoxon one-sample test for

the same 1000 samples. The expected distribution on the null hypothesis is shown by

the continuous curve on an equivalent scale.

The distribution of the z-values by the Wilcoxon test, Zw in the simulation is

shown as the histogram of Fig. D.2. The mean of the observed z-values, z̄OW  =  3.630,

and the standard deviation of 0.89 is again slightly less than unity. This gives a value

for (z̄OW / z̄OS)2 of (3.630 / 2.956)2  = 1.508, for an estimate of the relative efficiency for

the Wilcoxon one-sample test relative to the sign test, ews. The asymptotic relative

efficiency of the Wilcoxon one-sample test relative to the sign test for Normally

distributed data is known to be 1.500 (Noether, 1987), and so there is good agreement

between the theory in this paper and the known asymptotic value.

The joint distribution of the z-values by the Wilcoxon and sign tests, Zw and ZS

is shown by the scatter diagram of Fig. D.3, with each sample represented by one point.
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Some correlation between ZW and Zs would be expected, and Fig. D.3 in fact does

show considerable correlation between the observed values of zow and zos.

Fig. D.3. The joint distribution of the z-values by the sign and Wilcoxon tests in the

simulated samples (for clarity, only the first 200 points in the simulation are shown).

The observed distribution of (zow / zos )2, denoted ZR2, is shown in Fig. D.4 on a

linear scale. The median value is 1.497, which is close to the known asymptotic relative

efficiency eWS  of 1.500. The interquartile range of ZR2, is 1.23 to 1.92. It is interesting

to note that a logarithmic transformation of ZR2, (or equivalently 1/ZR2 )gives an

approximate Normal distribution.
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Fig. D.4. The distribution of the square of the ratio of the z-values from the Wilcoxon

and sign tests (zow / zos )2 for the 1000 samples in the simulation.

DERIVATION OF RELATIVE EFFICIENCY FROM REAL DATA SETS

It has been shown that the statistic (z̄A / z̄B)2 is a good estimate of the relative

efficiency of test A to test B (equation (D.5)). The simulation of the previous section

gave an illustration that when there are a very large number of sample data sets from a

population, the observed value of  (z̄OA / z̄OB)2 gives a good estimate of the relative

efficiency of test A to test B. However, in scientific research, it is rare for many data sets

from the same population to be available, and usually there is only one. The value of

(zOA / zOB)2  from a single data set may give only a poor estimate of the relative efficiency

(the interquartile range in the preceding simulation was quite wide - 1.23 to 1.92).

However, if we have a series of similar data sets which can be regarded as a

representative sample of data sets that occur in practice in a particular field of research,

and if the null hypothesis can be assumed not to be true in the data sets, then the
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empirical distribution of the observed relative efficiency (zOA / zOB)2 will give an estimate

of the underlying distribution of the relative efficiency of the two competing tests. By

using a number of similar data sets, each from a different, but related population, an

overall estimate of the relative efficiency may be made by taking the median value of the

squares of the observed ratios (zOA / zOB)2 , and a 95% confidence interval can be

calculated by the usual technique for a median (Altman, 1991). It seems preferable to take

the median value rather than the mean as the distribution of (zOA / zOB)2  may well be

skewed in general, as it was in the preceding simulation.

Different data sets will differ in the sample size n and in the size of the deviation

from the null hypothesis δ, and consequently will differ in the values of z̄  , but the relative

efficiency of two statistical tests is comparatively independent of these quantities. Just as

no two patients are exactly the same, and yet patients are grouped together for the

purposes of comparison of medical treatments and prediction of the best treatment for

future similar patients, so are no two sets of data the same, but sets of data may be

grouped together for the purposes of comparison of statistical tests and prediction of the

best test for future similar sets of data.

It is necessary for the sets of data used in this procedure to reflect nonzero

population treatment differences (otherwise both ZA and ZB will be distributed around

zero, and the median value of (zA/zB)2 will be a meaningless quantity). It is usually not

possible to know in which sets of data there are underlying nonzero differences in

treatment effect (especially in clinical trials), but one reasonable approach is to take trial

results significant at 5% by either test as likely to reflect nonzero population differences.

A proviso is that the proportion of significant results should be large enough to swamp

the results that are likely to be significant by chance.
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DISCUSSION

The method described in this paper is potentially of wide application.

Conventionally, statistical tests are compared by a consideration of their power functions,

but there are often difficulties in the exact calculation of these, and furthermore, models

must be assumed for the alternative hypothesis. The method described here avoids these

difficulties by directly comparing the tests in practice. It is not common for statistical

tests to be compared by analysis of a series of real data sets, but one example was

presented by Mann and Whitney (1947). In this paper the authors compared their test with

that of Wald and Wolfowitz in analysis of 62 data sets, and rather crudely considered the

numbers of the data sets significant at 5% and at 1%.

In the past, it has been rare for a number of data sets in the same area of research to

be collected together, but with the increasing numbers of meta-analyses being performed,

this is becoming more common. Those involved in meta-analyses will thus be in a

position to answer questions of optimum methods of analysis. For example, in cancer

research, a number of methods of survival analysis are available (Breslow, 1984), but a

decision on the most efficient method depends on which model of survival distribution is

assumed for the alternative hypothesis. The selection of the most efficient method could

be done more directly by analysis of a number of clinical trial data sets by each of the

various methods available, and comparison of the z-values as described in this appendix.

There are potential limitations to the method due to the various assumptions made.

Firstly, the assumption of equal variance of the test statistic under both the null and the

alternative hypothesis can be questioned, and in the computer simulation example, this

was found to be invalidated to a small extent. However, the theory can accommodate a

difference between σ and σ0 with no change in the final conclusion provided that the ratio

of σ/σ0 is the same for each test.
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The distribution of ZA (or ZB) will become skewed when z̄A (or z̄B) approaches the

maximum z-value given the sample size; for example, in the computer simulation, the

maximum z-value possible is (100 - 50)/√(100 × ½ × ½) i.e. 10.0. There will thus be

limitations to the method when sample sizes are small, or the size of the true difference

is large.

It may be felt that the uncertainties in the method of this paper make it unreliable.

However, it must be remembered that the alternative method of calculation of relative

efficiency using calculated power functions also has uncertainties (which are probably

greater) in the need to assume a model of treatment effect, and the method of this paper

can thus be put forward as a more reliable alternative.

The precision required in the estimation of relative efficiency is in any case not

great. The important question will usually be whether the relative efficiency is greater

than or less than unity, i.e. which of the statistical tests is the more efficient. The actual

value of the relative efficiency may be important only if there are other important factors

in the choice of the statistical method such as one of the tests being much simpler to

perform or understand, or a difference in the availability of computer software.
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APPENDIX E: THE EMPIRICAL RELATION BETWEEN THE CHI SQUARED

FUNCTION AND THE SQUARE OF THE EQUIVALENT z-VALUE

The empirical relation between χv2 and the square of the equivalent z-value z2 is

shown in Fig. E.1, for degrees of freedom v from 1 to 6 inclusive. For degree of freedom

v = 1, χ12 = z2  by definition, so giving a line of equality. Values are taken from Pearson

and Hartley (1976), Armitage and Berry (1987), Woodward and Francis (1988), and

Altman (1991). The relation is approximately linear for values of z2 greater than 1.0, and

this was utilised in sections 2.5 and 3.4.

Fig. E.1. The empirical relation between χv2  and z2.
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APPENDIX F: THE POWER RELATION OF THE MANN-WHITNEY U TEST

IN THE ANALYSIS OF ORDERED CATEGORICAL DATA

INTRODUCTION

Consider a set of data that is classified into a number of categories where these

categories fall into a natural order. Examples of such ordered categorical data from

cancer clinical trials are the degree of response to a cancer treatment, or the level of

morbidity from a cancer treatment. Examples from other fields of medicine are the

components of APGAR scores and the standard grading of muscle strength. It has been

recommended that such data are analyzed by the Mann-Whitney U test rather than the

Chi squared test (Moses et al, 1984; Morton & Dobson, 1990) because of the greater

power of the Mann-Whitney test. A general formula for the power of the Mann-

Whitney test for ordered categorical data is required for the modelling of section 2.6,

but does not appear in the literature. It is therefore derived in this Appendix.

NOTATION

In order to derive the formula, some assumptions are required about the

distribution of the population between the categories. Suppose that there are k

categories. In a number of situations it is reasonable to assume that the distribution of

the whole population between the k categories depends on another (hidden) variable,

which will be termed X, and which is continuous. Thus, returning to the examples from

Oncology, the numbers of patients falling into the different response categories

following a cancer treatment will depend on a variable which may be termed "treatment

efficacy"; and the numbers of patients in the morbidity categories will depend on a

variable which may be termed "effect on normal tissue". In a clinical trial comparing

two or more treatments, the type of difference that concerns us (in statistical
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terminology, the alternative hypothesis of interest) is of some difference in treatment

efficacy, or some difference in effect on normal tissue respectively.

Fig. F.1. The distribution of the population between the k categories (e.g. categories of

morbidity) and the relation to the underlying variable X (e.g. the effect of cancer

treatment on normal tissue).

This may be represented graphically as in Fig. F.l, where efficacy or effect is

represented by the variable X; and fl(X) represents the proportion of the population

falling into a category of greater number than category 1, f2(X) represents the proportion

falling into a category above category 2, and in general fr(X) represents the proportion

falling into a category above category r, i.e. in categories r+1 to k inclusive. The

proportion falling in category 2 is fl(X) - f2(X) and in general the proportion falling into

the rth category will be fr(X) - fr-1(X).  Thus at low values of X most of the population

may fall in the lowest category, but at higher values, the total proportion of observations

falling in the second or higher categories may progressively increase. For example, the
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total proportion of patients exceeding a particular level of morbidity would increase

progressively as the effect on normal tissues increases.

DERIVATION OF FORMULA

In general, the power of a statistical test in analyzing a trial of two treatments is

given by the formula (Noether, 1987):

μ(T) − μ0(T)
 —————   = zα / 2  +  ρzβ                                    (F.1)

σ0(T)

where

T is the numerical value resulting from the statistical test, i.e. the test statistic,

μ(T) is the expected value of the test statistic T assuming a difference between the

treatments,

μ0(T) is the expected value of the test statistic T assuming no treatment difference,

i.e. assuming the null hypothesis,

σ(T) is the standard deviation of the test statistic assuming a difference between

the treatments,

σ0(T) is the standard deviation of the test statistic assuming the null hypothesis,

zx is the 100(1-x) percentile of the standard normal distribution,

β is the type II error = 1 − power

α is the two-sided significance level, and

ρ =  σ(T)/σ0(T) which will be close to 1 for treatment differences which are not

large and which will tend to 1 as the treatment difference tends to zero and n → ∞.

Equation F.1 will then simplify to

μ(T) − μ0(T)
 —————   = zα / 2  + zβ                                      (F.2)

σ0(T)

This is applicable to the Mann-Whitney test as the test statistic is approximately

normally distributed, especially for large samples (Mann and Whitney, 1947).
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To derive a formula for ordered categorical data using the Mann-Whitney test, the

first step will be derivation of the quantity μ(U) − μ0(U) which is the deviation of the

Mann-Whitney test statistic U from its value assuming the null hypothesis; and the

second step will be the calculation of the quantity σ0(U) which is the standard deviation

of U assuming the null hypothesis.

DEVIATION OF U FROM ITS VALUE ASSUMING THE NULL HYPOTHESIS

Suppose that two samples are taken from the population, a sample of n1 at X = x

and a second sample of n2 at X = x+δx. Suppose that there are k ordered categories and

that n = n1 + n2.  Then the expected number of observations in the rth category in sample

1 is

n1 ×  {fr − 1 (x) − fr (x)}

and the expected number in sample 2 is

n2 ×  {fr − 1 (x+δx) − fr (x+δx)}.

It can be assumed that the functions f are smooth and so

fr (x+δx) → fr (x)  + δx d/dx fr (x)

when δx is made small.

The terminology can be simplified by putting

fr   =  fr (x) , f ′ r  = d/dx fr (x) ,       and δ  =  δx .

For completeness, define fo = 1 and f k  =  0, and thus f ′ o = 0 and f ′ k = 0.

Consider the rth category. The expected number of observations of sample 1 in this

category (E1) is n1{fr−1 − fr), and similarly there are an expected n2{fr−1 + δf′r−1 − fr − δf′r)
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observations of sample 2 (E2). The expected number of observations in sample 2 in

categories higher than category r (E3) is

n2 fr (x+δx)  = n2 ( fr  + δf ′ r ).

The contribution to U from any one of the observations in sample 1 category r is E3 +

½E2 , calculated as the number of observations in sample 2 of higher value + half the

number of ties in sample 2 (Armitage & Berry, 1987). Thus the expected contribution

from all the E1 observations in sample 1 is

E1(E3 + ½ E2 )
= n1  (fr − 1 − fr ) n2  {fr  + δf ′ r  + ½ ( fr − 1  + δf ′ r − 1  − fr − δf ′ r)}

= ½ n1 n2  (fr − 1 − fr ) ( fr − 1  + fr  + δf ′ r − 1  +  δf ′ r) .

Strictly this equality is only approximate since

Expectation(P×Q) = Expectation(P) × Expectation(Q) + Covariance(P,Q)

but the covariance terms here are of order n, whereas the other terms are of order n2, and

asymptotically, as δ → 0 and n → ∞ the covariance terms can be discounted. Summing

over all categories, the total expected value of U is

                                                k

Σ ½ n1 n2  {f 2 r − 1 − f 2 r  + δ (fr − 1 − fr ) (f ′ r − 1  + f ′ r)}
r = 1

                             k                                                                           k                                                      k

= ½ n1 n2 Σ (f 2 r − 1 − f 2 r  ) + ½ n1 n2 δ{Σ(fr − 1 − fr )f ′ r − 1  + Σ(fr − 1 − fr ) f ′ r}
r = 1 r = 1 r = 1

Now
                                                            k                             k                      k − 1                   k

                       Σ f 2 r − 1 − Σ f 2 r   = Σ f 2 r − Σ f 2 r
r = 1 r = 1 r = 0 r = 1

= f 2 0  − f 2 k   =  1

and
                                                            k                                                       k − 1

                       Σ (fr − 1 − fr ) f ′ r − 1  = Σ (fr − fr + 1 ) f ′ r   ,
                                                         r = 1 r = 0

                                                                      k − 1

                                           = Σ (fr − fr + 1 ) f ′ r  ,  as f ′ 0  = 0
                                                                      r = 1
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and

                                             k                                                 k − 1

                 Σ (fr − 1 − fr ) f ′ r  = Σ (fr − 1 − fr ) f ′ r   ,  as f ′ k  = 0
                                          r = 1 r = 1

Therefore the total expected value of U i.e. μ(U) is
                                                                                      k − 1                                         k − 1

½ n1 n2  + ½ n1 n2 δ{Σ(fr − fr + 1 ) f ′ r  + Σ(fr − 1 − fr ) f ′ r}
r = 1 r = 1

  = ½ n1 n2  + ½ n1 n2 δ F1

where

                                                                                     k − 1

F1  = Σ (fr − 1 − fr + 1 ) f ′ r  .
r = 1

The difference from the mean value of U expected on the null hypothesis (½ n1 n2 ) is

thus

½ n1 n2 δ F1 , i.e.

μ(U) −  μ0(U)  = ½ n1 n2 δ F1 .

THE VARIANCE OF U

The variance of the sampling distribution of U will now be calculated, on the

assumption of the null hypothesis. From Armitage & Berry (1987) this is given by

n1 n2
—————  {n3 − n − Σ(t3 − t) }

                                  12n (n − 1) t

where the summation is taken over all groups of tied observations, t being the number

of ties in a particular group. This reduces to

n1 n2
—————  {n3 − Σt3  }

                                       12n (n − 1) t

for ordered categorical data where t is the total number of observations in each category

since each category contains tied data, and thus Σt = n.
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The expected number of tied observations t in the rth category on the null

hypothesis is E1 + E2 when δx is 0, which equals n(fr − 1 − fr).  Since the number of ties

is distributed according to the Binomial distribution, the Expectation of t3 can be shown

to be equal to (Expectation of t)3 plus other terms of order n2 and below - and these other

terms become relatively insignificant as δ becomes asymptotically small and n becomes

large.

Therefore

                                                                                                k

Σ t3 ≈ Σ n3(fr − 1 − fr )3

t r = 1
Now

                   k                                            k                                 k                                        k                                     k

Σ (fr − 1 − fr )3 = Σ f 3 r − 1 −  3Σ f 2 r − 1 fr   + 3Σ f r − 1 f 2 r − Σ f 3 r
r = 1 r = 1 r = 1 r = 1 r = 1

                                               k                               k                        k

= Σ f 3 r − 1 − Σ f 3 r  −  3Σ f r − 1 fr   ( f r − 1 − f r  )
r = 1 r = 1 r = 1

But

                                                            k                               k                   k−1                     k

Σ f 3 r − 1 − Σ f 3 r  = Σ f 3 r − Σ f 3 r
r = 1 r = 1 r = 0 r = 1

= f 3 0 − f 3 k   =   1

and

             k                                                                               k -1

3Σ f r − 1 fr   ( f r − 1 − f r  )  = 3Σ f r − 1 fr   ( f r − 1 − f r  )  s i n c e f k  =  0
r = 1 r = 1

= 3 F2, say.

Therefore the variance equals

n1 n2
—————  {n3  − n3 (1 − 3 F2 ) }

                              12n (n − 1)

i.e.

σ02(U) = n1 n2 n2 F2 /{4 (n − 1)}

181



DERIVED FORMULA

Then substituting in equation F.2,

                                            ( ½ n1 n2 δ F1 )2

                                      —————————    =   ( zα / 2  + zβ )2

n1 n2 n2 F2 /{4 (n − 1)}

and
n2 F2 ( zα / 2  + zβ )2

n  ≈ ———————
n1 n2 F12 δ2

Thus when the sample sizes are equal and n1 = n2 = n/2, the relation between the number

of observations n and the functions of the boundaries between the categories f in order

to find a difference δ by the Mann-Whitney test with power 1-β at a two-sided

significance level α is given by

                                                                  k - 1

                                    4 Σ fr - 1 fr  (fr - 1  - fr   )  ( zα/2 + zβ )2
r = 1

                   n    ≈  ————————————————                           (F.3)
                                                                 k - 1

                                 { Σ  ( fr - 1  - fr + 1   ) f ′r   }2      δ2
r = 1

and this approximation tends to an equality as δ  → 0 and n → ∞ since all the

approximations in its derivation tend to equalities.
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DISCUSSION

As a consistency check, consider the situation where there are only 2 categories,

and the variable X is the proportion of the population in category 2, and this is denoted

by θ. Then

f0   =   0, f1   =   θ, f2   =   0,     and f ′1  =   1

and equation F.3 becomes

                                  4 f0 f1  (f0  − f1   )  ( zα/2 + zβ )2

                   n    =    ——————————————
                                         { ( f0  - f2   ) f ′1   }2      δ2

                i.e. n    = 4 θ (1 −  θ )  ( zα/2 + zβ )2 /  δ2                                      (F.4)

Equation F.4 is in fact the asymptotic power relation for a comparison of two

independent proportions (Lachin, 1981; Machin & Campbell, 1987). This result is

expected, i.e. it is expected that the power relation for the Mann-Whitney test should

reduce to that for two proportions since for two categories, the Mann-Whitney test

becomes equivalent to a test of two proportions, when the samples are large (Armitage

& Berry, 1987).

183



APPENDIX G: COMPUTER PROGRAM TO CALCULATE THE EFFICIENCY OF

THE MANN-WHITNEY TEST IN ANALYSIS OF TUMOUR RESPONSE DATA

This BASIC program was written to calculate the relation between the numbers of

patients required in a clinical trial and the number and separation between the ordered

categories used to assess the tumour response data. It was run on an Amstrad PCW 8512

personal computer using Mallard BASIC extended by Lightening Basic software (CP

Software, UK) to supply graphics commands. The results obtained are discussed in

section 2.6. Some explanatory comments are given in "REM" (meaning remark) lines of

the program.

PROGRAM INPUT

In the program, category boundaries can be specified by two alternative methods.

Either individual boundaries can be specified as a series of shifts from the baseline total

response sigmoid curve, or the extreme right hand and left hand curves can be specified

in terms of their shift together with the number of categories between them (equal to two

less than the total number of categories k). Values from standard tables of the normal

distribution (Neave, 1981) are entered as DATA statements in lines 1150 to 1260.

PROGRAM OUTPUT

The program gives a graphical and a numerical output, the latter being in two parts.

A sample occupies the next two pages. The four graphs in the first part of the output are

a printer dump of graphics drawn on the monitor screen. The upper right graph

corresponds to Fig. 2.8 (illustrating the lateral shift model) with scale lines on the

horizontal scale at intervals of 1.0 standard deviations. The lower right graph has a

corresponding horizontal scale. Values of the relative efficiency ek,2 are calculated and

184



185



186



plotted against this on a logarithmic scale (base 10) with scale lines at 1.0, 1.2, 1.4, 1.6,

1.8, 2.0, 3.0, 4.0, and 5.0. The left upper and lower graphs correspond to the right upper

and lower graphs except for a transformation of the horizontal scale. This is a probit

transformation in reverse, so that the horizontal scale is a linear scale of the total

response rate f2(E) which equals Φ(E), rather than efficacy E.

The second part of the program output gives numerical results of the calculations

at values of efficacy E from -2 to +2 standard deviations at intervals of 0.1. The column

headed "response" is the value of Φ(E) i.e. the total response rate. The column headed "n

for 2 cats" gives the value of expression 2.2 after omitting the two terms ( zα/2 + zβ)2 and

δ2 and after multiplying by φ2(E). The reason for the inclusion of this factor φ2(E) is to

facilitate comparison with standard tables for the comparison of two proportions e.g.

Machin & Campbell (1987) in which δ is defined in terms of the proportion of successes.

The column headed "n for expt" gives the corresponding quantity for expression 2.1 i.e.

omitting ( zα/2 + zβ)2 and δ2 and multiplying by φ2(E). The final column headed "Pitman

e." gives the ratio of these last two columns, which is the relative efficiency ek,2, and

which was plotted in the first part of the output.

The third part of the program output gives the values the last three columns of the

second part for some values of total response that are round numbers (5%, 10% to 90%

in 10% intervals, and 95%). These are obtained by linear interpolation. For example, the

second part of the program does not give values for a total response rate of exactly 40%,

but instead for the nearest values of 38.21% and 42.07%, corresponding to E of -0.3 and

-0.2 respectively. The values for a total response rate of 40% are estimated by linear

interpolation from the values for 38.21% and 42.07%.
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VERIFICATION

In addition to arithmetical checks, several verification checks of the program were

made. Firstly, when the number of boundaries was set at 1, with no shift, which is

identical to a two category classification, the value of ek,2 calculated by the program was

1.0 for all values of θ, as expected. Secondly, the values obtained in the second column

of the third part of the program output were checked against the values in Table 3.1 of

Machin and Campbell (1987) with close agreement. Finally, for each value of the total

response rate, the peak calculated relative efficiency approached a limiting value as the

number of categories k became large; and this limiting value (taken at the maximum

value of k utilised of 86) was equal to the theoretical relative efficiency at an infinite

number of categories (Appendix H), with an agreement of within 1%.
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PROGRAM LISTING

10 REM 7.3.91
20 REM SAVE "rescal2" : rem on B12 disc
30  REM
40 REM response calculations - to calculate the numbers of patients
50 REM needed and Pitman efficiency for different assumptions
60  REM
70 INPUT "Advance printer? How many lines"; n%: IF n% = 0 THEN GOTO 90
80 FOR j %=1 TO n%: LPRINT : NEXT: GOTO 70
90 DIM j(120), jd(120), zshift(122) : REM j contains the cumulative frequency

distribution of the standard normal distribution from z = -0 to +6 in 0.1
intervals, jd contains the probability density

100 DIM f(122), fd(122) : REM f contains the value of the function defining the
boundary between categories, and fd is its derivative

110 LEB xm
120 REM LEB xm turns drive status line off
130 REM contolling section ––––––––––––––––––––––––
140 LEB c
150 REM LEB c clears screen
160 GOSUB 1140: REM reading data
170 zl=-2 : zh=2 : REM z1= z lower extreme to be displayed
180 x1z%=10 : x2z%=500 : y2z%=131 : y4z%=254 : y4max%=140 : x1s=240 :

x2s=60 : y2s=120 : y4s=150 : REM xlz% is x zero for left graphs, x2z% is x
zero for right graphs, x1s is x scale for left graphs etc

190 GOSUB 670: REM inputting shifts in z to cum freq curves
200 GOSUB 830: REM drawing axes and scales for graph 4
210 GOSUB 270: REM calculating and drawing Pitman efficiency
220 GOSUB 960: REM drawing axes and scales for graph 2
230 GOSUB 1300: REM drawing cum freq distributions
240 a$ = INKEY$ : IF a$ = "" THEN GOTO 240: REM loop to allow screen dump
250 GOSUB 410: REM printing numbers needed, Pitman efficiency, etc
260 STOP
270 REM calculating and drawing Pitman efficiency = graph 4 ––––––––––––––
280 z10%=z1*10 : GOSUB 1440: GOSUB 1400: yprev=LOG10(n2/n) : REM npts
290 FOR z10% = z1*10+1 TO zh*10 : GOSUB 1440: GOSUB 1400: ynew=

LOG10(n2/n) : REM calculating npts
300 yg1%=y4z%-yprev*y4s : yg2%=y4z%-ynew*y4s : IF MIN(yg1%, yg2%) <

y4max% THEN GOTO 340
310 z=z10%/10
320 LEB 1 x2z%+(z-0.1)*x2s, yg1%, x2z%+z*x2s, yg2%
330 REM LEB 1 draws line x1, y1 to x2, y2
340 yprev=ynew : NEXT
350 z10%=z1* 10 : GOSUB 1440: GOSUB 1400: yprev=LOG10(n2/n) : REM npts
360 FOR z10% = z1*10+1 TO zh*10 : GOSUB 1440: GOSUB 1400: ynew= LOG

10(n2/n) : REM calculating npts
370 ygl%=y4z%-yprev*y4s : yg2%=y4z%-ynew*y4s : IF MIN(yg1%, yg2%) <

y4max% THEN GOTO 390
380 LEB 1 x1z%+j(z10%+59)*x1s, y4z%-yprev*y4s, x1z%+j(z10%+60)*x1s,

y4z%-ynew*y4s
390 yprev=ynew : NEXT
400 RETURN
410 REM printing numbers needed, Pitman efficiency, etc ––––––––––––––
420 INPUT "print to printer?", a$ : IF a$ = "y" THEN LEB le
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430 PRINT
440 IF i$="r" THEN PRINT "Maximum shift: "; zshmax; " Minimum shift: ";

zshmin; " Interval:"; zshint
450 IF i$="i" THEN PRINT "shifts: "; : FOR j%=1 TO n%: PRINT zshift(j%); :

NEXT
460 PRINT
470 PRINT " z", "response", "n for 2 cats", "n for expt", "Pitman e."
480 FOR z10% = z1*10 TO zh*10 : z=z10%/10 : GOSUB 1440: GOSUB 1400:

REM calculating npts
490 PRINT z, j(z10%+60), n2, n, n2/n
500 NEXT z10%
510 REM calculating for interpolated values of response
520 PRINT
530 PRINT "response", "n for 2 cats", "n for expt", "Pitman e."
540 r100%=5 : REM r100% is response rate x100
550 z10%=z1*10 : GOSUB 1440: GOSUB 1400: r1=j(z10%+60) : n21=n2 : n01=n

: P1=n2/n : REM r1 is response rate immediately below interpolated value
560 FOR z10%=z1*10+1 TO zh*10 : z=z10%/10 : GOSUB 1440: GOSUB 1400:

r2=j(z10%+60) : n22=n2 : n02=n : P2=n2/n : REM r2 is response rate
immediately above

570  r=r100%/100
580 IF r2 < r THEN 640: REM continuing until r1 and r2 are on either side of

interpolated value
590 fr1=(r-r1)/(r2-r1) : fr2=(r2-r)/(r2-r1)
600 PRINT r1*fr2+r2*fr1, n21*fr2 + n22*fr1, n01*fr2 + n02*fr1, P1*fr2 + P2*fr1
610 IF r100%=5 THEN r100%=10: GOTO 640
620 IF r100%=90 THEN r100%=95: GOTO 640
630  r100%=r100%+10
640  r1=r2 : n21=n22 : n01=02 : P1=P2 : NEXT
650 LEB n
660  RETURN
670 REM inputting shifts in z to cumulative freq curves
680 INPUT "regular shifts or irregular - enter r or i"; i$
690 IF i$ = "r" THEN GOTO 720
700 IF i$ = "i" THEN GOTO 790
710 GOTO 680
720 INPUT "maximum shift"; zshmax : REM largest positive shift (i.e. to the

right) in cum freq curve
730 INPUT "minimum shift"; zshmin
740 INPUT "interval"; zshint
750 ncat%=(zshmax-zshmin)/zshint + 2
760 FOR j%=1 TO ncat%-1 : zshift(j%) = zshmax -zshint*(j%-1) : NEXT
770 LEB c
780 PRINT "Maximum shift: "; zshmax; " Minimum shift: "; zshmin; "

Interval:"; zshint : RETURN
790 INPUT "number of boundaries"; n% : ncat%=n%+1
800 FOR j%=1 TO n% : INPUT "key in next shift in decreasing order"; zshift(j%)

: NEXT j%
810 LEB c
820 PRINT "shifts: "; : FOR j%=1 TO n%: PRINT zshift(j%); : NEXT: RETURN
830 REM drawing axes and scales for graph 4
840 x=x2z%+z1*x2s : GOSUB 1070: REM drawing vert axes for graph 4
850 FOR j%=z1*10+1 TO zh*10-1 : z =j% / 10 : x=x2z%+z*x2s : jrem% j% MOD

10 : IF jrem% = 0 THEN GOSUB 1070: REM drawing vertical axis
860 NEXT j %
870 x=x2z%+zh*x2s : GOSUB 1070: REM drawing vert axes
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880 FOR j%=0 TO 10: x=x1z%+j%*x1s/10 : GOSUB 1070: NEXT
890 FOR k = 1 TO 2 STEP 0.2: y=y4z%-y4s*LOG10(k) : IF y > y4max% THEN

GOSUB 1100
900 NEXT
910 FOR k% = 1 TO 10: y=y4z%-y4s*LOG10(k%) : IF y > y4max% THEN GOSUB

1100
920 NEXT
930 FOR k% = 10 TO 70 STEP 10: y=y4z%-y4s*LOG10(k%) : IF y > y4max%

THEN GOSUB 1100
940 NEXT
950 RETURN
960 REM drawing axes and scales for graph 2
970 x=x2z%+z1*x2s : GOSUB 1040: REM drawing vert axes
980 FOR j%=z1*10+1 TO zh*10-1 : z =j% / 10: x=x2z%+z*x2s : jrem%=j% MOD 10

: IF jrem% = 0 THEN GOSUB 1040
990 NEXT j %
1000 x=x2z%+zh*x2s : GOSUB 1040: REM drawing vert axes
1010 x=x1z% : GOSUB 1040: x=x1z%+x1s/2 : GOSUB 1040: x=x1z%+x1s : GOSUB

1040
1020 y=y2z% : GOSUB 1100: y=y2z%-y2s/2 : GOSUB 1100: y=y2z%-y2s : GOSUB

1100 : REM drawing horiz axis
1030 RETURN
1040 REM drawing vertical axes for graph 2
1050 LEB 1 x, y2z%, x, y2z%-y2s
1060 RETURN
1070 REM drawing vert axes for graph 4
1080 LEB 1 x, y4z%, x, y4max%
1090  RETURN
1100  REM drawing horiz axes
1110  LEB 1 x2z%+z1*x2s, y, x2z%+zh*x2s, y
1120 LEB 1 x1z%, y, x1z%+x1s, y
1130 RETURN
1140 REM reading data
1150 DATA .5, .5398, .5793, .6179, .6554, .6915, .7257, .7580, .7881, .8159, .8413
1160 DATA .8643, .8849, .9032, .9192, .9332, .9452, .9554, .9641, .9713, .9772
1170 DATA .9821, .9861, .9893, .9918, .99379, .99534, .99653, .99744, .99813, .99865
1180 DATA .99903, .99931, .99952, .99966, .99977, .99984, .99989, .99993, .99995,

.99997
1190 DATA .99998, .99999 ,.99999 ,.99999 ,1,1,1,1,1,1
1200 DATA 1,1,1,1,1,1,1,1,1,1
1210 DATA .3989, .3970, .3910, .3814, .3683, .3521, .3332, .3123, .2897, .2661, .2420
1220 DATA .2179, .1942, .1714, .1497, .1295, .1109, .0940, .0790, .0656, .0540
1230 DATA .0440, .0355, .0283, .0224, .0175, .0136, .0104, .00792, .00595, .00443
1240 DATA .00327, .00238, .00172, .00123, .00087, .00061, .00043, .00029, .00020,

.00013
1250 DATA .00009, .00006, .00004, .00002, .00002, .00001, .00001, 0,0,0
1260 DATA 0,0,0,0,0,0,0,0,0,0
1270 nj %=60 : FOR j %=O TO nj % : READ j (60+j %) : j (60-j %)=1 j (60+j %) :

NEXT j %
1280 FOR j%=0 TO nj% : READ jd(60+j%) : jd(60-j%)=jd(60+j%) : NEXT j%
1290 RETURN
1300 REM drawing graphs of cum freq distributions = graphs 2
1310 FOR b%=1 TO ncat%-1 : REM displaying the cum f dist for each category
1320 xprev=j(z1*10+60) : yprev=j((zl-zshift(b%))*10+60)
1330 FOR z10% = z1*10+1 TO zh*10 :z=z10%/10 : xnew j(z10%+60) : ynew=j

(z10%-zshift(b%)* 10+60)
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1340 LEB 1 x1z%+xprev*x1s, y2z%-yprev*y2s, x1z%+xnew*x1s, y2z%-ynew*y2s
1350 xprev=xnew : yprev=ynew : NEXT z10% : NEXT b%
1360 FOR b%=1 TO ncat%-1 : REM displaying the cum f dist for each category
1370 FOR z10% = z1*10 TO zh*10-1 :z=z10%/10 : j%=z10%-zshift(b%)*10+60 :

LEB 1 x2z%+z*x2s, y2z% j(j%)*y2s, x2z%+(z+0.1)*x2s, y2z% j(j%+1)*y2s :
NEXT

1380 NEXT b%
1390 RETURN
1400 REM calculating n patients if only 2 categories
1410 j%=z10%+60
1420 n2 = 4 * j(j%) * (1-j(j%))
1430 RETURN
1440 REM calculating n patients for the experimental categories
1450 f(0)=0 : f(ncat%)=1
1460 FOR b% = 1 TO ncat%-1 : j%=z10%-zshift(b%)*10+60 : f(b%) j(j%) : fd(b%)

jd(j%) :NEXT b%
1470 F1=0 : FOR b%=1 TO ncat%-1 : F1 = Fl + fd(b%) * (f(b%+l) - f(b%-1)) :

NEXT
1480 F2=0: FOR b%=1 TO ncat%-1 : F2 = F2 + f(b%) * f(b%+1) * (f(b%+1) -

f(b%)) : NEXT
1490 n = 4 * F2 * jd(z10%+60) ^ 2 / F1 ^ 2 : REM the jd(z10%+60) rescales to a

linear scale of response so that delta is in terms of response rather than z
1500 REM PRINT z; j%; f(1), fd(1), F1, F2, n
1510 RETURN

192



APPENDIX H: THE EFFICIENCY OF THE MANN-WHITNEY TEST RELATIVE

TO THE CHI SQUARED TEST USING A DICHOTOMOUS CLASSIFICATION OF

CONTINUOUS DATA

Consider the lateral shift model of section 2.6 when the number of categories k

tends to infinity, the width of each category w tends to zero, and the distribution

becomes continuous rather than categorical. The notation is changed so that a category

is denoted by the efficacy E at which the lower boundary function has a value of 50%

(as shown in Fig. H.1) and the width is denoted by δE rather than by w.

Fig. H.1. Definition of terms.

Then when the response rate is θ (and the efficacy is Φ-1(θ))

Y = Φ{Φ-1(θ) − E }
Y  −  δY   =   Φ{Φ-1(θ) − (E  + δE)}
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and the proportion of the population contained in category E (denoted δY) is

Φ{Φ-1(θ) − E } −  Φ{Φ-1(θ) − (E  + δE)}
= φ {Φ-1(θ) − E } × δE  when δE becomes small,

and thus the distribution of the population amongst the categories δE wide is an

asymptotically normal continuous distribution, centred on E = Φ-1(θ) and with unit

variance.

The asymptotic relative efficiency for two statistical tests can be calculated (Pratt

and Gibbons, 1981) by

                               {μ1′(θ)}2  /  σ12(θ)
                   lim    ————————                                                             (H.1)

n →∞    {μ2′(θ)}2  /  σ22(θ)

where

μ1′  is the derivative of the first test statistic,

σ12 is its variance, and

μ2′  and  σ22 are the same quantities for the second test

The derivatives are normally taken with respect to the index variable (here θ) but here they

will be taken with respect to the variable E. This results in no change in expression H.1.

Consider first the Mann-Whitney test applied to continuous normally distributed

data, Randles and Wolfe (1979) give

∞
(μ′)2 / σ2   = 3n  {        f 2 (E) dE }2∫

                                   -∞

For a normally distributed variable E with unit variance,

∞
{        f 2 (E) dE }2   =  1 /(4π)∫

        -∞
                       Therefore (μ′)2 / σ2   =  3n / 4π
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Consider now that the continuous normally distributed data is divided into a

dichotomy of total response versus non-response, and analyzed by a Chi squared test.

This analysis is equivalent to a test of two proportions (Armitage & Berry, 1987) and thus

(μ′)2 / σ2 can be derived from consideration of the difference in two proportions and its

variance. Hence

μ′   = d/dx θ

             = d/dx Φ(E)

   = φ(E)

            =  φ{Φ-1(θ)}

For the difference between two proportions θ and θ  +  δθ, the variance is given by

(Armitage & Berry, 1987)

θ(1  −  θ)         (θ  +  δθ)(1 −  θ  − δθ)
             σ2    = ————   + —————————

n / 2 n / 2

                                   = 4 θ(1  −  θ) / n     when δθ is small.

Thus substituting in expression H.1, and denoting the efficiency of the Mann-Whitney

test of ungrouped continuous data relative to the Chi squared test of 2 categories by eMW,χ2

                                                              3n / 4π
                                eMW , χ2   =  ————————————

φ2{Φ-1(θ)}  /  {4 θ(1  −  θ) / n }

                                                     3 θ(1  −  θ)
=    —————

π  φ2{Φ-1(θ)}

This result is used in section 2.6 and Appendix G.
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